Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
No 1 (2024)
3-13 157
Abstract

The article considers the behavior of the sum of the Dirichlet series F(s) = \sum nane\lambda ns, 0 < \lambda n \uparrow \infty , which converges absolutely in the left half-plane \Pi 0, on a curve arbitrarily approaching the imaginary axis — the boundary of this half-plane. We have obtained a solution to the following problem: Under what additional conditions on \gamma will the strengthened asymptotic relation be valid in the case when the argument s tends to the imaginary axis along \gamma over a sufficiently massive set.

14-34 139
Abstract

The best estimates for the approximation error of functions, defined on a finite interval, by algebraic polynomials and piecewise polynomial functions are obtained in the case when the errors are measured in the norms of Sobolev and Besov spaces. We indicate the weighted Besov spaces, whose functions satisfy Jackson-type and Bernstein-type inequalities and, as a consequence, direct and inverse approximation theorems. In a number of cases, exact constants are indicated in the estimates.

35-49 188
Abstract

The paper studies the behavior of bounded solutions of the inhomogeneous Schrödinger equation on non-compact Riemannian manifolds under a variation of the right side of the equation. Various problems for homogeneous elliptic equations, in particular the Laplace-Beltrami equation and the stationary Schrödinger equation, have been considered by a number of Russian and foreign authors since the second half of the 20th century. In the first part of this paper, an approach to the formulation of boundary value problems based on the introduction of classes of equivalent functions will be developed. The relationship between the solvability of boundary value problems on an arbitrary non-compact Riemannian manifold with variation of inhomogeneity is also established. In the second part of the work, based on the results of the first part, properties of solutions of the inhomogeneous Schrödinger equation on quasi-model manifolds are investigated, and exact conditions for unique solvability of the Dirichlet problem and some other boundary value problems on these manifolds are found.

50-68 116
Abstract

The solvability of a boundary value problem for a system, which describes the equilibrium state of elastic shallow inhomogeneous isotropic shells with loose edges referred to isometric coordinates in the Timoshenko shear model and consists of five non-linear second-order partial differential equations under given non-linear boundary conditions, is studied. The boundary value problem is reduced to a nonlinear operator equation for generalized displacements in Sobolev space, the solvability of this equation is established with the help of the contraction mapping principle.

69-76 127
Abstract

Maximal operators associated with singular hypersurfaces in multidimensional Euclidean spaces are considered. We prove the boundedness of these operators and define a critical exponent in the space of summable functions, when hypersurfaces are given by parametric equations.

77-97 154
Abstract

We present a much simpler than in [1] solution of the Blaschke problem: Find all regular curvilinear three-webs formed by the pencils of circles.



ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)