On a modification of Visser’s formal logic and its connection with Solovay’s modal logic
https://doi.org/10.26907/0021-3446-2023-11-15-25
Abstract
We present a new logic called SPL, embedded into Solovay’s provability logic S using a translation that embeds Visser’s formal logic FPL into G¨odel-L¨ob’s provability GL. SPL is formulated in the form of sequent and natural deduction calculi, a relational semantics is proposed.
About the Author
Y. I. PetrukhinRussian Federation
Yaroslav Igorevich Petrukhin
19 Bolshoy Karetny Lane, build 1, Moscow, 127051
References
1. Visser A. A propositional logic with explicit fixed points, Studia Logica 40 (2), 155–175 (1981).
2. Solovay R.M. Provability interpretations of modal logic, Israel J. Math. 25 (3–4), 287–304 (1976).
3. Kushida H. A Proof Theory for the Logic of Provability in True Arithmetic, Studia Logica 108 (4), 857–875 (2020).
4. G¨odel K. Eine interpretation des intuitionistischen Aussagenkalk¨uls, Ergebnisse Math. Colloq. 4, 39–40 (1933). [5] Ishii K., Kashima R., Kikuchi K. Sequent Calculi for Visser’s Propositional Logics, Notre Dame J. Formal Logic 42 (1), 1–22 (2001).
5. Yamasaki S., Sano K. Proof-Theoretic Embedding from Visser’s Basic Propositional Logic to Modal Logic K4 via Non-labelled Sequent Calculi, in : Philosophical Logic: Current Trends in Asia. Logic in Asia: Studia Logica Library, 233–257 (Springer, Singapore, 2017).
6. McKinsey J.C.C., Tarski A. Some theorems about the sentential calculi of Lewis and Heyting, J. Symbol. Logic 13 (1), 1–15 (1948).
7. Visser A. The provability logics of recursively enumerable theories extending Peano arithmetic at arbitrary theories extending Peano arithmetic, J. Philosoph. Logic 13 (1), 97–113 (1984).
Review
For citations:
Petrukhin Y.I. On a modification of Visser’s formal logic and its connection with Solovay’s modal logic. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(11):15-25. (In Russ.) https://doi.org/10.26907/0021-3446-2023-11-15-25