Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Forward and inverse problems for the Benney–Luke type fractional equations

https://doi.org/10.26907/0021-3446-2024-9-82-91

Abstract

In the paper, we study direct and inverse problems for fractional partial differential equations of the Benney–Luke type. The conditions for the existence and uniqueness of solutions to the Cauchy problems for a Benney–Luke type equation of fractional order are derived. In addition, the inverse problem of finding the right-hand side of the equation is investigated.

About the Authors

Yu. E. Fayziyev
National University of Uzbekistan named after M. Ulugbek; Karshi State University
Uzbekistan

Yusuf Ergashevich Fayziev

4 Universitetskaya str., Tashkent, 100174; 17 Kuchabag str., Karshi, 180119



Sh. T. Pirmatov
Tashkent State Technical University
Uzbekistan

Shamshod Turgunboevich Pirmatov

2 Universitetskaya str., Tashkent, 100095



Kh. T. Dekhkonov
Namangan State University
Uzbekistan

Khusan Tursunovich Dekhkonov

316 Uychi str., Namangan, 160119



References

1. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек (Наука, М., 2006).

2. Замышляева А.А. Математические модели соболевского типа высокого порядка, Вестн. ЮУрГУ, Сер. Матем. моделиров. и программ. 7 (2), 5–28 (2014), DOI: 10.14529/mmp140201.

3. Benney D.J., Luke J.C. On the interactions of permanent waves of finite amplitude, Math. Phys. 43 (1–4), 309–313 (1964).

4. Stoker J.J. Water Waves. The Mathematical Theory with Applications (Interscience Publ. Inc., New York, 1957).

5. Wehausen J.V., Laitone E.V. Surface Waves, in: Encyclopaed. Fhys. 9, 446–778 (Springer Verlag, 1960).

6. Юлдашев Т.К. Об одной нелокальной обратной задаче для нелинейного интегро-дифференциального уравнения Benney–Luke с вырожденным ядром, Вестн. ТвГУ, Сер. Прикл. матем. (3), 19–41 (2018).

7. Yuldashev T.K., Rakhmonov F.D. On a Benney–Luke type dfferential equation with nonlinear boundary value conditions, Lobachevskii J. Math. 42 (15), 3761–3772 (2021).

8. Мегралиев Я.Т., Велиева Б.К. Обратная краевая задача для линеаризованного уравнения Бенни–Люка с нелокальными условиями, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки 29 (2), 166–182 (2019).

9. Mokhtar Kirane, Abdissalam A. Sarsenbi Solvability of mixed problems for a fourth-order equation with involution and fractional derivative, Fractal and Fractional 7 (2), 131 (2023), DOI: 10.3390/fractalfract7020131.

10. Berezanskii Yu. Expansions in eigenfunctions of selfadjoint operators (Translations of Mathematical Monographs) (Amer. Math. Soc., Providence, RI, 1968).

11. Podlubny I. Fractional differential equations (Academic Press, San Diego, 1999).

12. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations 204 (Elsevier, Amsterdam, 2006).

13. Lizama C. Abstract Linear Fractional Evolution Equations Fract. Diff. Equat. 2, 465–497 (De Gruyter, Berlin, 2019).

14. Ashurov R.R., Fayziev Yu.E., Khushvaktov N.Kh. Some problems for the Barenblatt–Zheltov Kochina, Bull. Inst. Math. 5, 97–104 (2022).

15. Kabanikhin S.I. Inverse and Ill-Posed Problems: Theory and Applications, Inverse and Ill-posed Problems Ser. 55 (De Gruyter, Berlin, 2011).

16. Ashurov R., Fayziev Yu. On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations, Fractal and Fractional 6 (1), 41 (2022), DOI: 10.3390/fractalfract6010041.

17. Ашуров Р.Р., Мухиддинова А.Т. Обратная задача по определению плотности тепловых источников для уравнения субдиффузии, Дифференц. уравнения 56 (12), 1596–1609 (2020).

18. Ashurov R., Shakarova M. Time-Dependent source identification problem for fractional Schr¨odinger type equations, Lobachevskii J. Math. 43 (5), 303–315 (2022).

19. Ashurov R., Shakarova M. Time-dependent source identification problem for a fractional Schr¨odinger equation with the Riemann–Liouville derivative, Ukr. Math. J. 75 (7), 997–1015 (2023).

20. Ashurov R., Umarov S. Determination of the order of fractional derivative for subdiffusion equations, Fract. Calc. Appl. Anal. 23 (6), 1647–1662 (2020), DOI: 10.1515/fca-2020-0081/ivrm/pravila.

21. Alimov Sh., Ashurov R. Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation, J. Inverse and Ill-posed Problems 28 (5), 651–658 (2020), DOI: 10.1515/jiip-2020-0072.

22. Ashurov R.R., Fayziev Yu.E. Determination of fractional order and source term in a fractional subdiffusion equations, Eurasian Math. J. 13 (1), 19–31 (2022).

23. Ashurov R.R., Fayziev Yu.E. Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation, Lobachevskii J. Math. 42 (3), 508–516 (2021), DOI: 10.1134/S1995080221030069.

24. Ашуров Р.Р., Файзиев Ю.Э. Обратная задача по определению порядка дробной производной в волновом уравнении, Матем. заметки 110 (6), 824–836 (2021), DOI: 10.4213/mzm13090.


Review

For citations:


Fayziyev Yu.E., Pirmatov Sh.T., Dekhkonov Kh.T. Forward and inverse problems for the Benney–Luke type fractional equations. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):82-91. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-82-91

Views: 92


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)