Forward and inverse problems for the Benney–Luke type fractional equations
https://doi.org/10.26907/0021-3446-2024-9-82-91
Abstract
In the paper, we study direct and inverse problems for fractional partial differential equations of the Benney–Luke type. The conditions for the existence and uniqueness of solutions to the Cauchy problems for a Benney–Luke type equation of fractional order are derived. In addition, the inverse problem of finding the right-hand side of the equation is investigated.
About the Authors
Yu. E. FayziyevUzbekistan
Yusuf Ergashevich Fayziev
4 Universitetskaya str., Tashkent, 100174; 17 Kuchabag str., Karshi, 180119
Sh. T. Pirmatov
Uzbekistan
Shamshod Turgunboevich Pirmatov
2 Universitetskaya str., Tashkent, 100095
Kh. T. Dekhkonov
Uzbekistan
Khusan Tursunovich Dekhkonov
316 Uychi str., Namangan, 160119
References
1. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек (Наука, М., 2006).
2. Замышляева А.А. Математические модели соболевского типа высокого порядка, Вестн. ЮУрГУ, Сер. Матем. моделиров. и программ. 7 (2), 5–28 (2014), DOI: 10.14529/mmp140201.
3. Benney D.J., Luke J.C. On the interactions of permanent waves of finite amplitude, Math. Phys. 43 (1–4), 309–313 (1964).
4. Stoker J.J. Water Waves. The Mathematical Theory with Applications (Interscience Publ. Inc., New York, 1957).
5. Wehausen J.V., Laitone E.V. Surface Waves, in: Encyclopaed. Fhys. 9, 446–778 (Springer Verlag, 1960).
6. Юлдашев Т.К. Об одной нелокальной обратной задаче для нелинейного интегро-дифференциального уравнения Benney–Luke с вырожденным ядром, Вестн. ТвГУ, Сер. Прикл. матем. (3), 19–41 (2018).
7. Yuldashev T.K., Rakhmonov F.D. On a Benney–Luke type dfferential equation with nonlinear boundary value conditions, Lobachevskii J. Math. 42 (15), 3761–3772 (2021).
8. Мегралиев Я.Т., Велиева Б.К. Обратная краевая задача для линеаризованного уравнения Бенни–Люка с нелокальными условиями, Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки 29 (2), 166–182 (2019).
9. Mokhtar Kirane, Abdissalam A. Sarsenbi Solvability of mixed problems for a fourth-order equation with involution and fractional derivative, Fractal and Fractional 7 (2), 131 (2023), DOI: 10.3390/fractalfract7020131.
10. Berezanskii Yu. Expansions in eigenfunctions of selfadjoint operators (Translations of Mathematical Monographs) (Amer. Math. Soc., Providence, RI, 1968).
11. Podlubny I. Fractional differential equations (Academic Press, San Diego, 1999).
12. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations 204 (Elsevier, Amsterdam, 2006).
13. Lizama C. Abstract Linear Fractional Evolution Equations Fract. Diff. Equat. 2, 465–497 (De Gruyter, Berlin, 2019).
14. Ashurov R.R., Fayziev Yu.E., Khushvaktov N.Kh. Some problems for the Barenblatt–Zheltov Kochina, Bull. Inst. Math. 5, 97–104 (2022).
15. Kabanikhin S.I. Inverse and Ill-Posed Problems: Theory and Applications, Inverse and Ill-posed Problems Ser. 55 (De Gruyter, Berlin, 2011).
16. Ashurov R., Fayziev Yu. On the Nonlocal Problems in Time for Time-Fractional Subdiffusion Equations, Fractal and Fractional 6 (1), 41 (2022), DOI: 10.3390/fractalfract6010041.
17. Ашуров Р.Р., Мухиддинова А.Т. Обратная задача по определению плотности тепловых источников для уравнения субдиффузии, Дифференц. уравнения 56 (12), 1596–1609 (2020).
18. Ashurov R., Shakarova M. Time-Dependent source identification problem for fractional Schr¨odinger type equations, Lobachevskii J. Math. 43 (5), 303–315 (2022).
19. Ashurov R., Shakarova M. Time-dependent source identification problem for a fractional Schr¨odinger equation with the Riemann–Liouville derivative, Ukr. Math. J. 75 (7), 997–1015 (2023).
20. Ashurov R., Umarov S. Determination of the order of fractional derivative for subdiffusion equations, Fract. Calc. Appl. Anal. 23 (6), 1647–1662 (2020), DOI: 10.1515/fca-2020-0081/ivrm/pravila.
21. Alimov Sh., Ashurov R. Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation, J. Inverse and Ill-posed Problems 28 (5), 651–658 (2020), DOI: 10.1515/jiip-2020-0072.
22. Ashurov R.R., Fayziev Yu.E. Determination of fractional order and source term in a fractional subdiffusion equations, Eurasian Math. J. 13 (1), 19–31 (2022).
23. Ashurov R.R., Fayziev Yu.E. Uniqueness and existence for inverse problem of determining an order of time-fractional derivative of subdiffusion equation, Lobachevskii J. Math. 42 (3), 508–516 (2021), DOI: 10.1134/S1995080221030069.
24. Ашуров Р.Р., Файзиев Ю.Э. Обратная задача по определению порядка дробной производной в волновом уравнении, Матем. заметки 110 (6), 824–836 (2021), DOI: 10.4213/mzm13090.
Review
For citations:
Fayziyev Yu.E., Pirmatov Sh.T., Dekhkonov Kh.T. Forward and inverse problems for the Benney–Luke type fractional equations. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):82-91. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-82-91