On a difference equation with holomorphic coefficients generated by a hexagon
https://doi.org/10.26907/0021-3446-2024-8-20-26
Abstract
Let D be a hexagon with two straight and four right angles. We consider a sevenelement difference equation with holomorphic coefficients generated by this hexagon. A method for regularizing this equation is proposed. The solution is sought in the class of functions holomorphic outside the "half"of the boundary ᲛD and vanishing at infinity. It is represented as a Cauchy-type integral over the "half"of the boundary with an unknown density. Applications to the problem of moments for entire functions of exponential type (e.f.e.t.) are indicated.
About the Authors
F. N. Garif’yanovRussian Federation
Farkhat Nurgayazovich Garif’yanov
51 Krasnosel’skaya str., Kazan, 420066
E. V. Strezhneva
Russian Federation
Elena Vasil’evna Strezhneva
10 K. Marx str., Kazan, 420111
References
1. Garif’yanov F. N., Strezhneva E.V. Interpolation Problems for Entire Functions Induced by Regular Hexagons, Siberian Math. J. 59 (1), 59–64 (2018), DOI : 10.1134/S003744661801007X.
2. Aksent’eva E.P., Garif’yanov F.N. On Lacunary Analogs of the Poincare Theta-Series and Their Applications, Siberian Math. J. 43 (5), 787–794 (2002), DOI : 10.1023/A:1020191219922.
3. Гарифьянов Ф.Н. Биортогональные ряды, порожденные группой диэдра, Изв. вузов. Матем. (4), 11–15 (2001).
4. Garif’yanov F.N. Absolutely representing systems of elliptic functions, Math. Notes 59 (6), 676–680 (1996), DOI : 10.1007/BF02307220.
5. Garif’yanov F. N., Modina S.A. The Carleman kernel and its applications, Siberian Math. J. 53 (6), 1263–1273 (2012), DOI : 10.1134/S0037446612060055.
6. Михлин С.Г. Лекции по линейным интегральным уравнениям (Гос. изд-во физ.-матем. лит-ры, М., 1959).
7. Зверович Э.И., Метод локально-конформного склеивания, ДАН ССР 205 (4), 767–770 (1972).
Review
For citations:
Garif’yanov F.N., Strezhneva E.V. On a difference equation with holomorphic coefficients generated by a hexagon. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(8):20-26. (In Russ.) https://doi.org/10.26907/0021-3446-2024-8-20-26