Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Essentially quasi-injective modules and their direct sums

https://doi.org/10.26907/0021-3446-2024-7-9-23

Abstract

Conditions are studied under which an arbitrary direct sum of essentially (quasi-) injective modules is an essentially (quasi-) injective module. A description of essentially quasi-injective Abelian groups is obtained.

About the Authors

A. N. Abyzov
Kazan Federal University
Russian Federation

Adel N. Abyzov.

18 Kremlyovskaya str., Kazan, 420008



Bui Tien Dat
Kazan Federal University
Russian Federation

18 Kremlyovskaya str., Kazan, 420008



References

1. Srivastava A.K., Tuganbaev A.A., Asensio P.A.G. Invariance of Modules under Automorphisms of their Envelopes and Covers (Cambridge Univ. Press, 2021).

2. Tuganbaev A.A. Arithmetical Rings and Endomorphisms (Walter de Gruyter GmbH, Berlin-Boston, 2019).

3. Абызов А.Н., Куинь Ч.К., Туганбаев А.А. Модули, инвариантные относительно автоморфизмов и идемпотентных эндоморфизмов своих оболочек и накрытий, Итоги науки и техн. Сер. Соврем. матем. и ее прил. Темат. обз. 159, 3–45 (2019).

4. Туганбаев А.А. Автоморфизм-продолжаемые и эндоморфизм-продолжаемые модули, Фундамент. и прикл. матем. 21 (4), 175–248 (2016).

5. Tuganbaev A.A. Extending and Lifting of Endomorphisms and Automorphisms of Modules over Non-Primitive HNP Rings, Lobachevskii J. Math. 42 (4), 767–775 (2021).

6. Johnson R.E., Wong E.T. Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1), 260–268 (1961).

7. Килп М.А. Квазиинъективые абелевы группы, Вестн. Моск. ун-та. Сер. 1. Матем. Механ. 3, 3–4 (1967).

8. Singh S. Quasi-injective and quasi-projective modules over hereditary noetherian prime rings, Can. J. Math. 26 (5), 1173–1185 (1974).

9. Dickson S.E., Fuller K.R. Algebras for which every indecomposable right module is invariant in its injective envelope, Pac. J. Math. 31 (3), 655–658 (1969).

10. Er N., Singh S., Srivastava A.K. Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra 379, 223–229 (2013).

11. Santa-Clara C. Extending modules with injective or semisimple summands, J. Pure Appl. Algebra 127 (2), 193–203 (1998).

12. Quynh T.C., Abyzov A.N., Ha N.T.T, Yildirim T. Modules close to the automorphism-invariant and coinvariant, J. Algebra Appl. 18 (12), 1950235 (2019).

13. Tuganbaev A.A. Automorphism-invariant semi-Artinian modules, J. Algebra Appl. 16 (2), 1750029 (2017).

14. Tuganbaev A.A. Semidistributive rings and modules (Kluwer Acad. Publ., Dordrecht, 1998).

15. Куликов Л.Я. К теории абелевых групп произвольной мощности, Матем. сб. 9 (51) (1), 165–181 (1941).

16. Туганбаев А.А. Теория колец. Арифметические модули и кольца (МЦНМО, М., 2009).

17. Wisbauer R. Foundations of module and ring theory (Gordon and Breach Sci. Publ., Philadelphia, 1991).

18. Kasch F. Modules and rings (Acad. Press, Inc., London-New York, 1982).

19. Krilov P.A., Tuganbaev A.A. Modules over Discrete Valuation Domains (De Gruyter, Berlin, 2008).

20. Fuchs L. Abelian Groups (Springer Monogr. Math., 2015).

21. Dung N.V., Huynh D.V., Smith P.F., Wisbauer R. Extending modules (Pitman Res. Notes Math. Ser., 1994).

22. Alahmadi A., Jain S.K., Leroy A. ADS modules, J. Algebra 352 (1), 215–222 (2012).

23. Trang D.T., Koșan T.M., Tașdemir Ӧ., Quynh T.C. On modules and rings having large absolute direct summands, Commun. Algebra (2023) DOI: 10.1080/00927872.2023.2223301.

24. Dung N.V., Huynh D.V., Wisbauer R. Quasi-injective modules with ACC or DCC on essential submodules, Arch. Math. 53, 252–255 (1989).

25. Jain S.K., Lopez-Permouth S.R., Rizvi S.T. Continuous rings with ACC on essentials are Artinian, Proc. Amer. Math. Soc. 108, 583–586 (1990).

26. Camillo V., Mohamed F. Yousif CS-Modules with ACC or DCC on essential submodules, Commun. Algebra 19 (2), 655–662 (1991).

27. Koșan M.T., Žemlička J. ADS Abelian groups, J. Algebra Appl., https://doi.org/10.1142/S0219498824501822 (2023).

28. Kamal M.A., Müller B.J. The structure of extending modules over noetherian rings, Osaka J. Math. 25, 539–551 (1988).


Review

For citations:


Abyzov A.N., Dat B.T. Essentially quasi-injective modules and their direct sums. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(7):9-23. (In Russ.) https://doi.org/10.26907/0021-3446-2024-7-9-23

Views: 243


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)