Inequalities for the differences of averages on H1 spaces
https://doi.org/10.26907/0021-3446-2024-6-3-14
Abstract
Let $(x_n)$ be a sequence and $\{c_k\}\in \ell^\infty (\mathbb{Z})$ such that $\|c_k\|_{\ell^\infty}\leq 1$. Define
$$\mathcal{G}(x_n)=\sup_j\left|\sum_{k=0}^j c_k(x_{n_{k+1}}-x_{n_k})\right|.$$
Let now $(X,\beta ,\mu ,\tau )$ be an ergodic, measure preserving dynamical system with $(X,\beta ,\mu )$ a totally $\sigma$-finite measure space. Suppose that the sequence $(n_k)$ is lacunary. Then we prove the following results:
(i) Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that
$$\|\mathcal{G}(\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$
for all $f\in H^1(\mathbb{R})$,
(ii) Let
$$A_nf(x)=\frac{1}{n}\sum_{k=0}^{n-1}f(\tau^kx)$$
be the usual ergodic averages in ergodic theory. Then
$$\|\mathcal{G}(A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$
for all $f\in H^1(X)$,
(iii) If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{G}(A_nf)$ is integrable.
References
1. Calder´on A.P. Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. USA 59 (2), 349–353 (1968).
2. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).
3. Demir S. A generalizaition of Calder´on transfer principle, J. Comp. Math. Sci. 9 (5), 325–329 (2018).
4. Coifman R., Weiss G. Maximal Function and Hp Spaces Defined by Ergodic Transformations, Proc. Natl. Acad. Sci. USA 70 (6), 1761–1763 (1973).
5. Caballero R., de la Torre A. An atomic theory of ergodic Hp spaces, Studia Math. 82 (1), 39–69 (1985).
6. Ornstein D. A remark on Birkhoff ergodic theorem, Illinois J. Math. 15, 77–79 (1971).
7. Demir S. Hp Spaces and Inequalities in Ergodic Theory, Ph.D Thesis (University of Illinois at Urbana- Champaign, USA, May 1999).
Review
For citations:
Demir S. Inequalities for the differences of averages on H1 spaces. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(6):3-14. (In Russ.) https://doi.org/10.26907/0021-3446-2024-6-3-14