Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Inequalities for the differences of averages on H1 spaces

https://doi.org/10.26907/0021-3446-2024-6-3-14

Abstract

Let $(x_n)$ be a sequence and $\{c_k\}\in \ell^\infty (\mathbb{Z})$ such that $\|c_k\|_{\ell^\infty}\leq 1$. Define
$$\mathcal{G}(x_n)=\sup_j\left|\sum_{k=0}^j c_k(x_{n_{k+1}}-x_{n_k})\right|.$$
Let now $(X,\beta ,\mu ,\tau )$ be an ergodic, measure preserving dynamical system with $(X,\beta ,\mu )$ a totally $\sigma$-finite measure space. Suppose that the sequence $(n_k)$ is lacunary. Then we prove the following results:
(i) Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that
$$\|\mathcal{G}(\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$
for all $f\in H^1(\mathbb{R})$,
(ii) Let
$$A_nf(x)=\frac{1}{n}\sum_{k=0}^{n-1}f(\tau^kx)$$
be the usual ergodic averages in ergodic theory. Then
$$\|\mathcal{G}(A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$
for all $f\in H^1(X)$,
(iii) If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{G}(A_nf)$ is integrable.

About the Author

S. Demir
Agri Ibrahim Cecen University
Turkey

Sakin Demir

A˘grı, 04100 Turkey



References

1. Calder´on A.P. Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. USA 59 (2), 349–353 (1968).

2. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).

3. Demir S. A generalizaition of Calder´on transfer principle, J. Comp. Math. Sci. 9 (5), 325–329 (2018).

4. Coifman R., Weiss G. Maximal Function and Hp Spaces Defined by Ergodic Transformations, Proc. Natl. Acad. Sci. USA 70 (6), 1761–1763 (1973).

5. Caballero R., de la Torre A. An atomic theory of ergodic Hp spaces, Studia Math. 82 (1), 39–69 (1985).

6. Ornstein D. A remark on Birkhoff ergodic theorem, Illinois J. Math. 15, 77–79 (1971).

7. Demir S. Hp Spaces and Inequalities in Ergodic Theory, Ph.D Thesis (University of Illinois at Urbana- Champaign, USA, May 1999).


Review

For citations:


Demir S. Inequalities for the differences of averages on H1 spaces. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(6):3-14. (In Russ.) https://doi.org/10.26907/0021-3446-2024-6-3-14

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)