Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator
https://doi.org/10.26907/0021-3446-2024-5-63-78
Abstract
The inverse scattering method is used to integrate the Korteweg-de Vries equation with time-dependent coefficients. We derive the evolution of the scattering data of the Sturm–Liouville operator whose coefficient is a solution of the Korteweg-de Vries equation with time-dependent coefficients. An algorithm for constructing exact solutions of the Korteweg-de Vries equation with time-dependent coefficients is also proposed; we reduce it to the inverse problem of scattering theory for the Sturm–Liouville operator. Examples illustrating the stated algorithm are given.
About the Authors
U. A. HoitmetovUzbekistan
Umid Azadovich Hoitmetov
14 H. Alimdjan str., Urgench, 220100
T. G. Khasanov
Uzbekistan
Temur Gafurjonovich Khasanov
14 H. Alimdjan str., Urgench, 220100
References
1. Tariq K.U., Younis M., Rezazadeh H., Rizvi S.T.R., Osman M.S. Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Mod. Phys. Lett. B 32 (26), 1850317 (2018), URL: https://doi.org/10.1142/S0217984918503177.
2. Osman M.S. One-soliton shaping and inelastic collision between double solitons in the fifth-order variablecoefficient Sawada–Kotera equation, Nonlinear Dynam. 96(12), 1491–1496(2019), URL: https://link.springer.com/article/10.1007/s11071-019-04866-1.
3. Osman M.S., Tariq K.U., Bekir A., Elmoasry A., Elazab N.S., Younis M., Abdel-Aty M. Investigtion of soliton solutions with different wave structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation, Commun. Theory. Phys. 72 (3), 1–7 (2020), URL: https://doi.org/10.1088/1572-9494/ab6181.
4. Lu D., Tariq K.U., Osman M.S., Baleanu D., Younis M., Khater M.M.A. New analytical wave structures for the (3+1)-dimensional Kadomtsev–Petviashvili and the generalized Boussinesq models and their applications, Results Phys. 14, 1–7 (2019), URL: https://doi.org/10.1016/j.rinp.2019.102491.
5. Seadawy A.R. Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma, Phys. A: Stat. Mech. Appl. 439, 124–131 (2015), URL: https://doi.org/10.1016/j.rinp.2017.10. 045.
6. Wazwaz A.M. Multiple complex soliton solutions for integrable negative-order KdV and integrable negativeorder modified KdV equations, Appl. Math. Lett. 88, 1–7 (2019), URL: https://doi.org/10.1016/j.aml.2018. 08.004.
7. Al-Ghafri K.S., Rezazadeh H. Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation, App. Math. Nonlinear Sci. 4 (2), 289–304 (2019), URL: http://dx.doi.org/10.2478/AMNS.2019.2.00026.
8. Wazwaz A.M. A (2 + 1)-dimensional time-dipendent Date–Jimbo–Kashiwara–Miwa equation: Painlev´e integrability and multiple soliton solutions, Comput. Math. Appl. 79 (4), 1145–1149 (2020), URL: https://doi.org/10.1016/j.camwa.2019.08.025.
9. Brzezinski D.W. Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Appl. Math. Nonlinear Sci. 3 (2), 487–502 (2018), URL: http://dx.doi.org/10.2478/AMNS. 2018.2.00038.
10. Gardner C., Greene I., Kruskal M., Miura R. Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19 (19), 1095–1097 (1967), URL: https://doi.org/10.1103/PhysRevLett.19.1095.
11. Фаддеев Л.Д. Свойства S-матрицы одномерного уравнения Шрёдингера, Тр. МИАН СССР 73, 314–336 (1964).
12. Марченко В.А. Операторы Штурма–Лиувилля и их приложения (Наук. думка, Киев, 1977).
13. Левитан Б.М. Обратные задачи Штурма–Лиувилля (Наука, М., 1984).
14. Lax P.D. Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, 467–490 (1968).
15. Бхатнагар П. Нелинейные волны в одномерных дисперсных системах (Мир, М., 1983).
16. Лэм Дж. Л. Введение в теорию солитонов (Мир, М., 1983).
17. Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов. Метод обратной задачи (Наука, М., 1980).
18. Абловиц М., Сигур Х. Солитоны и метод обратной задачи (Мир, М., 1987).
19. Тахтаджян Л.А., Фаддеев Л.Д. Гамильтонов подход в теории солитонов (Наука, М., 1986).
20. Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения (Мир, М., 1988).
21. Новокшенов В.Ю. Введение в теорию солитонов: учеб. пособие (Ин-т компьют. исследов., М., 2002).
22. Mel’nikov V.K. Integration method of the Korteweg-de Vries equation with a self-consistent source., Phys. Lett. A. 133 (9), 493–496 (1988), URL: https://doi.org/10.1016/0375-9601(88)90522-1.
23. Mel’nikov V.K. Integration of the Korteweg-de Vries equation with a source, Inverse Problems 6 (2), 233–246 (1990), URL: https://doi.org/10.1088/0266-5611/6/2/007.
24. Leon J., Latifi A. Solution of an initial-boundary value problem for coupled nonlinear waves, J. Phys. A.: Math. Gen. 23 (8), 1385–1403 (1990), URL: https://doi.org/10.1088/0305-4470/23/8/013.
25. Claude C., Latifi A., Leon J. Nonlinear resonant scattering and plasma instability: an integrable model, J. Math. Phys. 32 (12), 3321–3330 (1991), URL: https://doi.org/10.1063/1.529443.
26. Zeng Y., Ma W.-X., Lin R. Integration of the solution hierarchy with self-consistent source, J. Math. Phys. 41 (8), 5453–5489 (2000), URL: https://doi.org/10.1063/1.533420.
27. Hasanov A.B., Hoitmetov U.A. On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions, Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb. 47 (2), 250–261 (2021), URL: http://doi.org/10.30546/2409-4994.47.2.250.
28. Khasanov A.B., Hoitmetov U.A. Integration of the loaded Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.Tech. Math. Sci. Mathematics 42 (4), 1–15 (2022), URL: http://trans.imm.az/inpress/4204-02.pdf.
29. Khasanov A.B., Hoitmetov U.A. On integration of the loaded mKdV equation in the class of rapidly decreasing functions, Изв. Иркутск. гос. ун-та. Сер. Матем. 38, 19–35 (2021), URL: https://doi.org/10.26516/19977670.2021.38.19.
30. Хасанов А.Б., Матякубов М.М. Интегрирование нелинейного уравнения Кортевега-де Фриза с дополнительным членом, ТМФ 203 (2), 192–204 (2020), URL: https://doi.org/10.4213/tmf9693.
31. Хасанов А.Б., Хасанов Т.Г. Задача Коши для уравнения Кортевега-де Фриза в классе периодических бесконечнозонных функций, Зап. научн. сем. ПОМИ 506, 258–278 (2021), URL: http://ftp.pdmi.ras.ru/pub/publicat/znsl/v506/p258.pdf.
32. Нахушев А.М. Уравнения математической биологии (Высш. шк., М., 1995).
33. Кожанов А.И. Нелинейные нагруженные уравнения и обратные задачи, Журн. вычисл. матем. и матем. физ. 44 (4), 694–716 (2004).
34. Lugovtsov A.A. Propagation of nonlinear waves in a uhomogenous gas-liquid medium. Derivation of the wave equations close to Korteweg-de Vries approximation, Appl. Mech. Tech. Phys. 50 (2), 327–335 (2009), URL: https://doi.org/10.1007/s10808-009-0044-8.
35. Lugovtsov A.A. Propagation of nonlinear waves in a gas-liquid medium. Exact and approximate analytical solutions of wave equations, Appl. Mech. Tech. Phys. 51 (1), 44–50 (2010), URL: https://doi.org/10.1007/s10808-010-0007-0.
36. Rizvi S.T.R., Seadawy A.R., Ashraf F., Younis M., Iqbal H., Baleanu D. Lump and interaction solutions of a geophysical Korteweg-de Vries equation, Results in Phys. 19, 1–8 (2020), URL: https://doi.org/10.1016/j.rinp.2020.103661.
Review
For citations:
Hoitmetov U.A., Khasanov T.G. Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(5):63-78. (In Russ.) https://doi.org/10.26907/0021-3446-2024-5-63-78