Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

The variation operator of differences of averages over lacunary sequences maps H1w(R) to L1w(R)

https://doi.org/10.26907/0021-3446-2024-5-30-36

Abstract

Let $f$ be a locally integrable function defined on $\mathbb{R}$, and $(n_k)$ be a lacunary sequence. Define
$$A_nf(x)=\frac{1}{n}\int_0^nf(x-t)\, dt,$$
and let
$$\mathcal{V}_{\rho}f(x)=\left(\sum_{k=1}^\infty|A_{n_k}f(x)-A_{n_{k-1}}f(x)|^{\rho}\right)^{1/\rho}.$$
Suppose that  $w\in A_p$, $1\leq p<\infty$, and $\rho\geq 2$. Then, there exists a positive constant $C$ such that
$$\|\mathcal{V}_{\rho}f\|_{L^1_w}\leq C\|f\|_{H^1_w}$$
for all $f\in H^1_w(\mathbb{R})$.

About the Author

S. Demir
Agri Ibrahim Cecen University
Turkey

Sakin Demir

A˘grı, 04100 



References

1. Demir S. Hp spaces and inequalities in ergodic theory, Ph.D Thesis (University of Illinois at UrbanaChampaign, USA, 1999).

2. Garcia-Cuerva J. Weighted Hp spaces, Diss. Math. 162, 1–63 (1979).

3. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).


Review

For citations:


Demir S. The variation operator of differences of averages over lacunary sequences maps H1w(R) to L1w(R). Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(5):30–36. (In Russ.) https://doi.org/10.26907/0021-3446-2024-5-30-36

Views: 130


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)