The variation operator of differences of averages over lacunary sequences maps H1w(R) to L1w(R)
https://doi.org/10.26907/0021-3446-2024-5-30-36
Abstract
Let $f$ be a locally integrable function defined on $\mathbb{R}$, and $(n_k)$ be a lacunary sequence. Define
$$A_nf(x)=\frac{1}{n}\int_0^nf(x-t)\, dt,$$
and let
$$\mathcal{V}_{\rho}f(x)=\left(\sum_{k=1}^\infty|A_{n_k}f(x)-A_{n_{k-1}}f(x)|^{\rho}\right)^{1/\rho}.$$
Suppose that $w\in A_p$, $1\leq p<\infty$, and $\rho\geq 2$. Then, there exists a positive constant $C$ such that
$$\|\mathcal{V}_{\rho}f\|_{L^1_w}\leq C\|f\|_{H^1_w}$$
for all $f\in H^1_w(\mathbb{R})$.
References
1. Demir S. Hp spaces and inequalities in ergodic theory, Ph.D Thesis (University of Illinois at UrbanaChampaign, USA, 1999).
2. Garcia-Cuerva J. Weighted Hp spaces, Diss. Math. 162, 1–63 (1979).
3. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).
Review
For citations:
Demir S. The variation operator of differences of averages over lacunary sequences maps H1w(R) to L1w(R). Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(5):30–36. (In Russ.) https://doi.org/10.26907/0021-3446-2024-5-30-36