On the Baillie PSW-conjecture
https://doi.org/10.26907/0021-3446-2024-4-80-88
Abstract
The Baillie PSW hypothesis was formulated in 1980 and was named after the authors R. Baillie, C. Pomerance, J. Selfridge and S. Wagstaff. The hypothesis is related to the problem of the existence of odd numbers n \equiv \pm 2 (mod 5), which are both Fermat and Lucas-pseudoprimes (in short, FL-pseudoprimes). A Fermat pseudoprime to base a is a composite number n satisfying the condition an - 1 \equiv 1 (mod n). Base a is chosen to be equal to 2. A Lucas pseudoprime is a composite n satisfying Fn - e(n) \equiv 0 (mod n), where n(e) is the Legendre symbol e(n) = \bigl( n 5 \bigr) , Fm the mth term of the Fibonacci series. According to Baillie’s PSW conjecture, there are no FL-pseudoprimes. If the hypothesis is true, the combined primality test checking Fermat and Lucas conditions for odd numbers not divisible by 5 gives the correct answer for all numbers of the form n \equiv \pm 2 (mod 5), which generates a new deterministic polynomial primality test detecting the primality of 60 percent of all odd numbers in just two checks. In this work, we continue the study of FL-pseudoprimes, started in our article "On a combined primality test" published in the journal "Izvestia VUZov.Matematika" No. 12 in 2022. We have established new restrictions on probable FL-pseudoprimes and described new algorithms for checking FL-primality, and with the help of them we proved the absence of such numbers up to the boundary B = 1021, which is more than 30 times larger than the previously known boundary 264 found by J. Gilchrist in 2013. An inaccuracy in the formulation of theorem 4 in the mentioned article has also been corrected.
About the Authors
Sh. T. IshmukhametovRussian Federation
Shamil Talgatovich Ishmukhametov
18 Kremlyovskaya str., Kazan, 420008
B. G. Mubarakov
Russian Federation
Bulat Gazinurovich Mubarakov
18 Kremlyovskaya str., Kazan, 420008
R. G. Rubtsova
Russian Federation
Ramilya Gakilevna Rubtsova
18 Kremlyovskaya str., Kazan, 420008
E. V. Oleynikova
Russian Federation
Elizaveta Vitalievna Oleynikova
38 Bolshaya Semenovskaya str., Moscow, 107023
References
1. Baillie R., Wagstaff S.S., Jr. Lucas Pseudoprimes (PDF), Math. Comp. 35 (152), 1391–1417 (1980). http://mpqs.free.fr/LucasPseudoprimes.pdf
2. Pomerance C., Selfridge J.L., and Wagstaff S.S., Jr. The Pseudoprimes to 25 cdot 109, Math. Comp. 35 (151), 1003–1026 (1980). https://doi.org/10.1090/S0025-5718-1980-0572872-7, https://math.dartmouth.edu/ carlp/PDF/paper25.pdf
3. Crandall R., Pomerance C.B. The Prime Numbers: A Computational Perspertive. R. Crandall, C. Pomerance. – sec. ed. (Springer–Verlag, Berlin, 2005).
4. Wikipedia. Baillie–PSW primality test. https://en.wikipedia.org/wiki/Baillie–PSW_primality_test
5. Pomerance C. Are There Counterexamples to the Baillie–PSW Primality Test? In H.W. Lenstra, Jr., J.K. Lenstra, and P. Van Emde Boas (Eds.), Amsterdam, 1984. http://www.pseudoprime.com/dopo.pdf
6. Baillie R., Fiori A., Wagstaff S.S., Jr. Strengthening the Baillie-PSW primality test. Zbl 1478.11152 Math. Comput. 90 (330), 1931–1955 (2021).
7. Weisstein E.W. Baillie-PSW Primality Test. http://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html
8. Ишмухаметов Ш.Т., Антонов Н.А., Мубараков Б.Г., Рубцова Р.Г. Об одном комбинированном тесте простоты, Изв. вузов. Матем. (12), 123–129 (2022). DOI: https://doi.org/10.26907/0021-3446-2022-12- 123-129.
9. Ishmukhametov S., Antonov N., Mubarakov B. On a modification of the Lucas Primality Test, Lobachevskii J. Math. 50 (7), 1–8 (2023).
10. Wall D.D. Fibonacci series modulo m, Amer. Math. Monthly 67 (6), 525–532 (1960).
Review
For citations:
Ishmukhametov Sh.T., Mubarakov B.G., Rubtsova R.G., Oleynikova E.V. On the Baillie PSW-conjecture. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(4):80-88. (In Russ.) https://doi.org/10.26907/0021-3446-2024-4-80-88