Sharpening of Tur´an-type inequality for polynomials
https://doi.org/10.26907/0021-3446-2024-4-39-46
Abstract
For the polynomial P(z) = n \sum j=0 cjzj of degree n having all its zeros in | z| \leq k, k \geq 1, V. Jain in “On the derivative of a polynomial”, Bull. Math. Soc. Sci. Math. Roumanie Tome 59, 339–347 (2016) proved that max | z| =1 | P \prime (z)| \geq n \biggl( | c0| + | cn| kn+1 | c0| (1 + kn+1) + | cn| (kn+1 + k2n) \biggr) max | z| =1 | P(z)| . In this paper we strengthen the above inequality and other related results for the polynomials of degree n \geq 2.
About the Authors
N. A. RatherIndia
Srinagar, 190006
A. Bhat
India
Srinagar, 190006
M. Shafi
India
Srinagar, 190006
References
1. Bernstein S. Sur l’ordre de la meilleure approximation des functions continues parles polyn^omes de degr`e donn´e, Mem. Cl. Sci. Acad. Roy Belg. 4, 1–103 (1912).
2. Tur´an P. ¨Uber die Ableitung von Polynomen, Compositio Math. 7, 89–95 (1940).
3. Govil N.K. On the derivative of a polynomial, Proc. Amer. Math. Soc. 41 (2), 543–546 (1973).
4. Govil N.K. Some inequalities for derivatives of polynomials, J. Approx. Theory 66 (1), 29–35 (1991).
5. Milovanovi´c G.V., Mitrinovi´c D.S., Rassias Th.M. Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific Publ. Co., Singapore, 1994).
6. Rahman Q.I., Schmeisser G. Analytic Theory of Polynomials (Oxford Univ. Press Inc., New York, 2002).
7. Jain V.K. On the Derivative of a Polynomial, Bull. Math. Soc. Sci. Math. Roumanie Tome 59 (4), 339–347 (2016).
8. Mir A. A Tur´an-type inequality for polynomials, Indian J. Pure Appl. Math. 52, 911–914 (2021).
9. Osserman R. A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (12), 3513–3517 (2000).
10. Frappier C., Rahman Q.I., Ruscheweyh St. New inequalities for polynomials, Trans. Amer. Math. Soc. 288 (1), 69–99 (1985).
Review
For citations:
Rather N.A., Bhat A., Shafi M. Sharpening of Tur´an-type inequality for polynomials. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(4):39-46. (In Russ.) https://doi.org/10.26907/0021-3446-2024-4-39-46