Preview

Известия высших учебных заведений. Математика

Расширенный поиск

О существовании собственного значения обобщенной модели Фридрихса

https://doi.org/10.26907/0021-3446-2024-4-31-38

Аннотация

Рассматривается семейство ограниченных самосопряженных матричных операторов (обобщенных моделей Фридрихса), действующих на прямую сумму одночастичных и двухчастичных подпространств пространства Фока. Получены условия существования собственных значений матричных операторов.

Об авторах

М. Э. Муминов
Самаркандский государственный университет
Узбекистан

Мухиддин Эшкобилович Муминов

Университетский бульвар, д. 15, г. Самарканд, 140104



У. Р. Шадиев
Самаркандский государственный университет
Узбекистан

Усмон Рамазанович Шадиев

Университетский бульвар, д. 15, г. Самарканд, 140104



Список литературы

1. Tretter C. Spectral Theory of Block Operator Matrices and Applications (Imperial College Press, 2008).

2. Mogilner A.I. Hamiltonians in solid state physics as multiparticle discrete Schrodinger operators: problems and results, Advances in Societ Math. 5, 139–194 (1991).

3. Friedrichs K.O. Perturbation of Spectra in Hilbert Space, Lectures in Applied Mathematics (Proceedings

4. Malishev V.A. and Minlos R.A. Linear Infinite-Particle Operators (Translations of Mathematical Monographs, 143) (AMS, Providence, RI, 1995).

5. Minlos R.A. and Spohn H. The three-body problem in radioactive decay: The case of one atom and at most two photons, 159–193 (AMS, Providence, RI, 1996).

6. Hubner M. and Spohn H. Spectral properties of the spin-boson Hamiltonian, Ann. Inst. H. Poincar´e Phys. Th´eor. 62 (3), 289–323 (1995).

7. Spohn H. Ground state(s) of the spin-boson Hamiltonian, Comm. Math. Phys. 123 (2), 277–304 (1989).

8. Жуков Ю.В., Минлос Р.А. Спектр и рассеяние в модели “спин-бозон” с не более чем тремя фотонами, ТМФ 103 (1), 63–81 (1995).

9. Muminov M., Neidhardt H., and Rasulov T. On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case, J. Math. Phys. 56, 053507 (2015); doi: 10.1063/1.4921169

10. Muminov M.I., Rasulov T.H. On the eigenvalues of a 2 times 2 block operator matrix, Opuscula Math. 35 (3), 371–395 (2015).

11. Muminov M.I., Rasulov T.H. Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2 times 2 operator matrix, Eurasian Math. J. 5 (2), 60–77 (2014).

12. Muminov M.I., Rasulov T.H. Universality of the discrete spectrum asymptotics of the three-particle Schrodinger operator on a lattice Nanosystems: Physics, Chemistry, Mathematics, 6 (2), 280–293 (2015).

13. Muminov M.I., Rasulov T.H., Tosheva N.A. Analysis of the discrete spectrum of the family spectrum of 3 times 3 operator matrices, Comm. Math. Anal. 23 (1), 17–37 (2020).

14. Rasulov T.H., Dilmurodov E.B. Eigenvalues and virtual levels of a family of 2times 2 operator matrices, Methods Funct. Anal. Topology 25 (3), 273–281 (2019).

15. Rasulov T.H., Dilmurodov E.B. Analysis of the spectrum of a 2 times 2 operator matrix, Discrete spectrum asymptotics. Nanosystems: Physics, Chemistry, Mathematics 11 (2), 138–144 (2020).

16. Расулов Т.Х., Дилмуродов Э.Б. Бесконечность числа собственных значений операторных 2 times 2- матриц. Асимптотика дискретного спектра, ТМФ 205 (3), 368–390 (2020).

17. Reed M., Simon B. Methods of Modern Mathematical Physics. IV: Analysis of Operators (Acad. Press, New York, 1978).

18. Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I. The Threshold Effects for the Two-Particle Hamiltonians on Lattices, Comm. Math. Phys. 262, 91–115 (2006).


Рецензия

Для цитирования:


Муминов М.Э., Шадиев У.Р. О существовании собственного значения обобщенной модели Фридрихса. Известия высших учебных заведений. Математика. 2024;(4):31-38. https://doi.org/10.26907/0021-3446-2024-4-31-38

For citation:


Muminov M.I., Shadiev U.R. On the existence of an eigenvalue of the generalized Friedrichs model. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(4):31-38. (In Russ.) https://doi.org/10.26907/0021-3446-2024-4-31-38

Просмотров: 77


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)