Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Variation and λ-jump inequalities on Hp spaces

https://doi.org/10.26907/0021-3446-2024-4-15-19

Abstract

Let \phi \in S with \int \phi (x) dx = 1, and define \phi t(x) = 1 tn \phi \Bigl( x t \Bigr) , and denote the function family \{ \phi t\ast f(x)\} t>0 by \Phi \ast f(x). Let \scrJ be a subset of \BbbR (or more generally an ordered index set), and suppose that there exists a constant C1 such that \sum t\in \scrJ | \^\phi t(x)| 2 < C1 for all x \in \BbbR n. Then i) There exists a constant C2 > 0 such that \| V2(\Phi \ast f)\| Lp \leq C2\| f\| Hp, n n + 1 < p \leq 1 for all f \in Hp(\BbbR n), n n + 1 < p \leq 1. ii) The \lambda -jump operator N\lambda (\Phi \ast f) satisfies \| \lambda [N\lambda (\Phi \ast f)]1/2\| Lp \leq C3\| f\| Hp, n n + 1 < p \leq 1, uniformly in \lambda > 0 for some constant C3 > 0.

About the Author

S. Demir
Agri Ibrahim Cecen University
Turkey

Agrı, 04100



References

1. Bourgain J. Pointwise ergodic theorems for arithmetic sets, Publ. Math. Inst. Hautes ´Etudes Sci. 69, 5–41 (1989).

2. Demir S. Hp Spaces and Inequalities in Ergodic Theory, Ph.D Thesis (Univ. Illinois at Urbana-Champaign, Usa, May 1999).

3. Demir S. Inequalities for the variation operator, Bull. Hellenic Math. Soc. 64, 92–97 (2020).

4. Demir S. Variational inequalities for the differences of averages over lacunary sequences, New York J. Math. 28, 1099–1111 (2022).

5. Jones R.L., Seeger A., Wright J. Strong variational and jump inequalities in harmonic analysis, Trans. AMS 360 (12), 6711–6742 (2008).

6. L´epingle D. La variaition d’order p des semi-martingales, Z. Wahrscheinlichkeitstheorie Und Verw. Gebiete 36 (4), 295–316 (1976).

7. Liu H. Variational characterization of Hp, Proc. Royal Soc. Edinburgh 149 (5), 1123–1134 (2019).

8. Latter R.H. A characterization of Hp(BbbR n) in terms of atoms, Studia Math. 62 (1), 93–101 (1978).


Review

For citations:


Demir S. Variation and λ-jump inequalities on Hp spaces. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(4):15-19. (In Russ.) https://doi.org/10.26907/0021-3446-2024-4-15-19

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)