Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Symptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds

https://doi.org/10.26907/0021-3446-2024-1-35-49

Abstract

The paper studies the behavior of bounded solutions of the inhomogeneous Schrödinger equation on non-compact Riemannian manifolds under a variation of the right side of the equation. Various problems for homogeneous elliptic equations, in particular the Laplace-Beltrami equation and the stationary Schrödinger equation, have been considered by a number of Russian and foreign authors since the second half of the 20th century. In the first part of this paper, an approach to the formulation of boundary value problems based on the introduction of classes of equivalent functions will be developed. The relationship between the solvability of boundary value problems on an arbitrary non-compact Riemannian manifold with variation of inhomogeneity is also established. In the second part of the work, based on the results of the first part, properties of solutions of the inhomogeneous Schrödinger equation on quasi-model manifolds are investigated, and exact conditions for unique solvability of the Dirichlet problem and some other boundary value problems on these manifolds are found.

About the Authors

E. A. Mazepa
Volgograd State University
Russian Federation

Elena Alekseevna Mazepa 

100 Universitetskiy Ave., Volgograd, 400062 



D. K. Ryaboshlikova
Volgograd State University
Russian Federation

Daria Konstantinovna Ryaboshlikova 

100 Universitetskiy Ave., Volgograd, 400062 



References

1. Grigor’yan A. Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (2), 135–249 (1999).

2. Ancona A. Negative curved manifolds, elliptic operators, and the Martin boundary, Ann. Math. 125 (3), 495–536 (1987).

3. Корольков С.А. О разрешимости краевых задач для стационарного уравннеия Шрёдинегра в неограниченных областях римановых многообразий, Дифференц. уравнения 51 (6), 726–732 (2015).

4. Мазепа Е.А. Краевые задачи для стационарного уравнения Шрёдингера на римановых многообразиях, Сиб. матем. журн. 43 (3), 591–599 (2002).

5. Losev A.G., Mazepa E.A., Chebanenko V.Y. Unbounded solutions of the Stationary Shr¨odinger equation on Riemannian manifolds, Comput. Methods and Funct. Theory 3 (2), 443–451 (2003).

6. Anderson M.T. The Dirichlet problem at infinity for manifolds of negative curvature, J. Diff. Geom. 18 (4), 701–721 (1983).

7. Sullivan D. The Dirichlet problem at infinity for a negatively curved manifold, J. Diff. Geom. 18 (4), 723–732 (1983).

8. Лосев А.Г., Мазепа Е.А. Ограниченные решения уравнения Шрёдингера на римановых произведениях, Алгебра и анализ 13 (1), 84–110 (2001).

9. Лосев А.Г., Филатов В.В. Ограниченные решения стационарного уравнения Шрёдингера с конечным интегралом энергии на модельных многообразиях, Матем. физ. и компьют. моделирование 24 (3), 5–17 (2021).

10. Murata M. Positive harmonic functions on rotationary symmetric Riemannian manifolds, Potential Theory (Proc. Intern. Conf., Nagoya/Japan, 1992).

11. Ni L., Shi Y., Tam L-F. Poisson equation, Poincare–Lelong equation and the curvature decay on complete Kahler manifolds, J. Diff. Geom. 57, 339–388 (2001).

12. Grigor’yan A., Verbitsky I. Pointwise estimates of solutions to semilinear elliptic equations and inequalities, J. d’Analyse Math´ematique 137 (2), 559–601 (2019).

13. Munteanu O., Sesum N. The Poisson equation on complete manifolds with positive spectrum and applications, Adv. Math. 223 (1), 198–219 (2010).

14. Mastrolia P., Monticelly D.D., Punzo F. Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds, Adv. Diff. Equat. 23 (1/2), 89–108 (2018).

15. Лосев А.Г. О разрешимости задачи Дирихле для уравнения Пуассона на некоторых некомпактных римановых многообразиях, Дифференц. уравнения 53 (12), 1643–1652 (2017).

16. Мазепа E.A. О разрешимости краевых задач для уравнения Пуассона на некомпактных римановых многообразиях, Матем. физика и компьют. моделирование 20 (3), 136–147 (2017).

17. Losev A.G., Mazepa E.A. On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds, Пробл. анал. Issues Anal. 7 (25), Спецвыпуск, 101–112 (2018).

18. Лосев А.Г., Мазепа Е.А. Ограниченные решения уравнения Шрёдингера на некомпактных римановых многообразиях специального вида, ДАН 367 (2), 166–167 (1999).

19. Лосев А.Г., Мазепа Е.А. Об асимптотическом поведении решенеий некоторых уравнений эллиптического типа на некомпактных римановых многообразиях, Изв. вузов. Матем. (6), 41–49 (1999).

20. Григорьян А.А., Надирашвили Н.С. Лиувиллевы теоремы и внешние краевые задачи, Изв. вузов. Матем. (5), 25–33 (1987).

21. Гилбарг Д., Трудингер М. Эллиптические дифференциальные уравнения с частными производными второго порядка (Наука, М., 1989).


Review

For citations:


Mazepa E.A., Ryaboshlikova D.K. Symptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(1):35-49. (In Russ.) https://doi.org/10.26907/0021-3446-2024-1-35-49

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)