Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces Hm(a, b) and Bs2,q(a, b)
https://doi.org/10.26907/0021-3446-2024-1-14-34
Abstract
The best estimates for the approximation error of functions, defined on a finite interval, by algebraic polynomials and piecewise polynomial functions are obtained in the case when the errors are measured in the norms of Sobolev and Besov spaces. We indicate the weighted Besov spaces, whose functions satisfy Jackson-type and Bernstein-type inequalities and, as a consequence, direct and inverse approximation theorems. In a number of cases, exact constants are indicated in the estimates.
About the Author
R. Z. DautovRussian Federation
Rafail Zamilovich Dautov
18 Kremlyovskaya str., Kazan, 420008
References
1. Jackson D. Uber die Genauigkeit der Anndiherungs tetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung (Universit¨at G¨ottingen, Preisschrift und Dissertation, 1911).
2. Бернштейн С.Н. О наилучшем приближении непрерывных функций посредством многочленов данной степени, в сб. : Сообщ. Харьковск. матем. общ-ва. Сер. 2, 49–194 (1912).
3. Petrushev P.P. Direct and converse theorems for spline and rational approximation and Besov spaces, в сб. : In: Cwikel, M., Peetre, J., Sagher, Y., Wallin, H. (eds), Function Spaces and Applications. Lect. Notes Math.,363–377 (Springer, Berlin, Heidelberg, 1988).
4. DeVore R., Lorentz G.G. Constructive Approximation (Springer, Berlin, 1993).
5. Nikolski S.M. Approximation of Functions of Several Variables and Imbedding Theorems (Springer-Verlag,Berlin, Heidelberg, New York, 1975).
6. Babuˇska I., Guo B.Q. Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, Part III: Inverse approximation theorems, J. Approx. Theory 173, 122–157 (2013).
7. Timan A.F. Theory of Approximation of Functions of a Real Variable (Pergamon, Oxford, 1963).
8. Schumaker L.L. Spline Functions: Basic Theory (Wiley, New York, 1981)
9. Triebel H. Interpolation theory, function spaces, differential operators (North-Holland, Amsterdam, 1978).
10. Nicaise S. Jacobi polynomials, weighted Sobolev spaces and approximation results of some singularities, Math. Nachrichten 213, 117–140 (2000).
11. Babuˇska I., Guo B.Q. Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, Part I: Approximability of functions in weighted Besov spaces, SIAM J. Numer. Anal. 39 (5), 1512–1538 (2002).
12. Dautov R.Z., Timerbaev M.R. Sharp estimates for the polynomial approximation in weighted Sobolev spaces, Diff. Equat. 51 (7), 886–894 (2015).
13. Guessab A., Milovanovi´c G.V. Weighted L2-analogues of Bernstein’s inequality and classical orthogonal polynomials, J. Math. Anal. Appl. 182 (1), 244–249 (1994).
14. Babuˇska I., Guo B.Q. Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions, Numer. Math. 85 (2), 219–255 (2000).
15. Babuˇska I., Guo B.Q. Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, Part II: Optimal rate of convergence of the p-version finite element solutions, Math. Models Methods Appl. Sci. 12 (5), 689–719 (2002).
16. Widlund O. On best error bounds for approximation by piecewise polynomial functions, Numer. Math. 27, 327–338 (1977).
17. Babuˇska I., Kellogg R.B., Pitk¨aranta J. Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33, 447–471 (1979).
18. Szego G. Orthogonal Polynomials. 4th ed. Amer. Math. Soc. Collog. Publ. 23 (Amer. Math. Soc., Providence, RI, 1975).
19. Guo B.-Y., Shen J., Wang L.-L. Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (5), 1011–1028 (2009).
20. Даутов Р.З. Прямые и обратные теоремы аппроксимации функций алгебраическими полиномами и сплайнами в нормах пространства Cоболева, Изв. вузов. Матем. (6), 79–86 (2022).
21. Кудрявцев Л.Д. Об эквивалентных нормах в весовых пространствах, Тр. МИАН СССР 170, 161–190 (1984).
22. de-Vore R., Scherer K. Interpolation of linear operators on Sobolev spaces, Ann. of Math. 109, 583–599 (1979).
23. Schwab C. p- and hp- finite element methods: theory and applications to solid and fluid mechanics. Numer. Math. Sci. Comput. (Oxford University Press, Oxford, 1999).
Review
For citations:
Dautov R.Z. Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces Hm(a, b) and Bs2,q(a, b). Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(1):14-34. (In Russ.) https://doi.org/10.26907/0021-3446-2024-1-14-34





















