Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Rings, matrices over which are representable as the sum of two potent matrices

https://doi.org/10.26907/0021-3446-2023-12-90-94

Abstract

This paper investigates conditions under which representability of each element a from the field P as the sum a = f + g, with f q1 = f, g q2 = g and q1, q2 are fixed integers >1, implies a similar representability of each square matrix over the field P. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with 2 is a unit, over which each square matrix is the sum of two 4-potent matrices. 

About the Authors

A. N. Abyzov
Kazan Federal University
Russian Federation

Adel Nailevich Abyzov

18 Kremlyovskaya str., Kazan, 420008 



D. T. Tapkin
Kazan Federal University
Russian Federation

Danil’ Tagirzyanovich Tapkin

18 Kremlyovskaya str., Kazan, 420008 



References

1. Hirano Y., Tominaga H. Rings in which every element is the sum of two idempotents, Bull. Aust. Math. Soc. 37 (2), 161–164 (1988).

2. Tang G., Zhou Y., Su H. Matrices over a commutative ring as sums of three idempotents or three involutions, Linear Multilinear Algebra 67 (2), 267–277 (2019).

3. Абызов А.Н., Мухаметгалиев М.И. О некоторых матричных аналогах малой теоремы Ферма, Матем. заметки 101 (2), 163–168 (2017).

4. Абызов А.Н., Тапкин Д.Т. Кольца, матрицы над которыми представимы в виде суммы идемпотентной матриы и q-потентной матрицы, Сиб. матем. журн. 62 (1), 3–18 (2021).

5. Abyzov A.N., Tapkin D.T. When is every matrix over a ring the sum of two tripotents? Linear Algebra and Appl. 630 (3), 316–325 (2021).


Review

For citations:


Abyzov A.N., Tapkin D.T. Rings, matrices over which are representable as the sum of two potent matrices. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;1(12):90-94. (In Russ.) https://doi.org/10.26907/0021-3446-2023-12-90-94

Views: 133


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)