Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation

https://doi.org/10.26907/0021-3446-2023-12-3-16

Abstract

This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved. 

About the Authors

D. K. Durdiev
Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan; Bukhara State University
Uzbekistan

Durdimurod Kalandarovich Durdiev

46 University str., Tashkent, 100170; 11 Muhammad Ikbal str., Bukhara, 200118



A. A. Boltaev
Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan; Bukhara State University
Uzbekistan

Asliddin Askar ugli Boltaev

46 University str., Tashkent, 100170; 11 Muhammad Ikbal str., Bukhara, 200118



A. A. Rahmonov
Institute of Mathematics at the Academy of Sciences of the Republic of Uzbekistan; Bukhara State University
Uzbekistan

Askar Ahmadovich Rahmonov

46 University str., Tashkent, 100170; 11 Muhammad Ikbal str., Bukhara, 200118



References

1. Kaltenbacher B., Lasiecka I., Marchand R. Wellposedness and exponential decay rates for the Moore–Gibson– Thompson equation arising in high intensity ultrasound, Control and Cybernetics 40 (4), 971–988 (2011).

2. Lasiecka I., Wang X. Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy, Zeitschrift f¨ur angewandte Math. und Phys. 67 (2), 2–17 (2016).

3. Al-Khulai W., Boumenir A. Reconstructing the Moore–Gibson–Thompson Equation, Nonautonomous Dynamical Systems 7 (1), 219–223 (2020). ЗАДАЧА ОПРЕДЕЛЕНИЯ ЯДРА ТИПА СВЕРТКИ 15

4. Lasiecka I., Wang X. Moore–Gibson–Thompson equation with memory, part II: General decay of energy, J. Diff. Equat. 259 (12), 7610–7635 (2015).

5. Lasiecka I. Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics, J. Evolution Equat. 17 (1), 411–441 (2017).

6. Romanov V.G. Inverse problems for differential equations with memory, Eurasian J. Math. and Comput. Appl. 2 (4), 51–80 (2014).

7. Дурдиев Д.К., Сафаров Ж.Ш. Обратная задача об определении одномерного ядра уравнения вязкоупругости в ограниченной области, Матем. заметки 97 (6), 855–867 (2015).

8. Durdiev D.K., Totieva Zh.D. The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type, J. Inverse Ill-posed Probl. 28 (1), 43–52 (2019).

9. Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor, Math. Meth. Appl. Sci. 45, 8374–8388 (2022).

10. Durdiev U.D., Totieva Z.D. A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation, Math. Meth. Appl. Sci. 42 (3), 7440–7451 (2019).

11. Дурдиев Д.К., Рахмонов А.А. Обратная задача для системы интегро-дифференциальных уравнений SH-волн в вязкоупругой пористой среде: глобальная разрешимость, ТМФ 195 (3), 491–506 (2018).

12. Durdiev D.K., Rahmonov A.A. A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity, Math. Meth. Appl. Sci. 43, 8776–8796 (2020).

13. Бухгейм А.Л., Дятлов Г.В. Единственность в одной обратной задаче определения памяти, Сиб. матем. журн. 37 (3), 526–533 (1996).

14. Janno J., Wolfersdorf L. Inverse problems for identification of memory kernels in heat flow, Inverse and Ill-posed Probl. 4 (1), 39–66 (1996).

15. Pais E., Janno J. Inverse problem to determine degenerate memory kernel in heat flux with third kind boundary conditions, Math. Model. and Anal. 11 (4), 427–450 (2006).

16. Colombo F. An inverse problem for a parabolic integrodifferential model in the theory of combustion, Phys. 236, 81–89 (2007).

17. Guidetti D. Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term, Discrete & Continuous Dynamical Systems 8 (4), 749–756 (2015).

18. Бондаренко А.Н., Бугуева Т.В., Иващенко Д.С. Метод интегральных преобразований в обратных задачах аномальной диффузии, Изв. вузов. Матем. (3), 3–14 (2017).

19. Durdiev D.K., Turdiev Kh.Kh. Inverse problem for a first-order hyperbolic system with memory, Diff. Equat. 56 (12), 1634–1643 (2020).

20. Дурдиев Д.К., Турдиев Х.Х. Задача определения ядер в системе интегродифференциальных уравнений Максвелла, Сиб. журн. индустр. матем. 24 (2), 38–61 (2021).

21. Boltaev A.A., Durdiev D.K. Inverse problem for viscoelastic system in a vertically layered medium, Владикавк. матем. журн. 24 (4), 30–47 (2022).

22. Liu S., Triggiani R. An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement, J. Inverse Ill-posed Probl. 21 (6), 825–869 (2013).

23. Arancibia R., Lecaros R., Mercado A., Zamorano S. An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound, J. Inverse Ill-posed Probl. 30 (5), 659–675 (2022).

24. Мергалиев Я.Т. О разрешимости одной обратной краевой задачи для эллиптического уравнения второго порядка, Вестн. ТвГУ. Сер. Прикл. матем. (23), 25–38 (2011).

25. Мегралиев Я.Т. Об одной обратной краевой задачи для эллиптического уравнения второго порядка с дополнительными интегральными условиями, Владикавк. матем. журн. 15 (4), 30–43 (2013).

26. Худавердиев К.И., Велиев А.А. Исследование одномерной смешанной задачи для класса псевдогиперболических уравнений третьего порядка с нелинейным оператором в правой части (Чашеглы, Баку, 2010).


Review

For citations:


Durdiev D.K., Boltaev A.A., Rahmonov A.A. Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;1(12):3-16. (In Russ.) https://doi.org/10.26907/0021-3446-2023-12-3-16

Views: 139


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)