Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Finite element modeling of the eigenvibrations of the square plate with attached oscillator

https://doi.org/10.26907/0021-3446-2023-11-92-97

Abstract

For the problem on eigenvibrations of the plate with an attached oscillator, the new symmetric linear variational statement is proposed. It is established the existence of the sequence of positive eigenvalues of finite multiplicity with limit point at infinity and the corresponding complete orthonormal system of eigenvectors. The new symmetric scheme of the finite element method with Hermite finite elements is formulated. Error estimates consistent with the solution smoothness for the approximate eigenvalues and approximate eigenvectors are proved. The results of numerical experiments illustrating the influence of the solution smoothness on the computation accuracy are presented.

About the Authors

D. M. Korosteleva
Kazan State Power Engineering University
Russian Federation

Diana Maratovna Korosteleva

51 Krasnoselskaya str., Kazan, 420066



S. I. Solov’ev
Kazan Federal University
Russian Federation

Sergey Ivanovich Solov’ev

18 Kremlevskaya str., Kazan, 420008



References

1. Серёгин С.В. Динамика тонких цилиндрических оболочек с присоединенной массой (КнАГТУ, Комсомольск-на-Амуре, 2016).

2. Андреев Л.В., Дышко А.Л., Павленко И.Д. Динамика пластин и оболочек с сосредоточенными массами (Машиностроение, М., 1988).

3. Андреев Л.В., Станкевич А.И., Дышко А.Л., Павленко И.Д. Динамика тонкостенных конструкций с присоединенными массами (Изд-во МАИ, М., 2012).

4. Соловьёв С.И. Нелинейные задачи на собственные значения. Приближенные методы (LAP Lambert Academic Publishing, Saarbr¨ucken, 2011).

5. Algazin S.D. Numerical study of free oscillations of a beam with oscillators, J. Appl. Mech. Techn. Phys. 47 (3), 433—438 (2006).

6. Algazin S.D. Numerical analysis of free vibrations of a beam with oscillators, J. Appl. Mech. Techn. Phys. 47 (4), 573—581 (2006).

7. Stammberger M., Voss H. An unsymmetric eigenproblem governing vibrations of a plate with attached loads, in : Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing 2009. Funchal, Madeira, Portugal, 1—4 September 2009, Vol. 1, 2880–2889 (Curran Associates, Inc., New York, 2010).

8. Su Y., Bai Z. Solving rational eigenvalue problems via linearization, SIAM J. Matrix Anal. Appl. 32 (1), 201–216 (2011).

9. Alam F., Behera N. Linearizations for rational matrix functions and Rosenbrock system polynomials, SIAM J. Matrix Anal. Appl. 37 (1), 354–380 (2016).

10. G¨uttel S., Tisseur F. Solving rational eigenvalue problems via linearization, Acta Numerica 26, 1–94 (2017).

11. Прочность, устойчивость, колебания, Т. 3, под ред. Биргера И.А., Пановко Я.Г. (Машиностроение, М., 1968).

12. Adams D.A. Sobolev spaces (Academic Press, New York, 1975).

13. Михлин С.Г. Линейные уравнения в частных производных (Высш. шк., М., 1977).

14. Blum H., Rannacher R. On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Meth. Appl. Sci. 2, 556–581 (1980).

15. Сьярле Ф. Метод конечных элементов для эллиптических задач (Мир, М., 1980).

16. Solov’ev S.I. Approximation of variational eigenvalue problems, Diff. Equat. 46 (7), 1030–1041 (2010).

17. Solov’ev S.I. Approximation of sign-indefinite spectral problems, Diff. Equat. 48 (7), 1028–1041 (2012).

18. Babuˇska I., Osborn J.E. Finite element–Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp. 52 (186), 275–297 (1989).


Review

For citations:


Korosteleva D.M., Solov’ev S.I. Finite element modeling of the eigenvibrations of the square plate with attached oscillator. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(11):92-97. (In Russ.) https://doi.org/10.26907/0021-3446-2023-11-92-97

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)