Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function
https://doi.org/10.26907/0021-3446-2023-11-75-85
Abstract
The Lebesgue constant of the classical Fourier operator is uniformly approximated by a logarithmic-fractional-rational function depending on three parameters; they are defined using the specific properties of logarithmic and rational approximations. A rigorous study of the corresponding residual term having an indefinite (non-monotonic) behavior has been carried out. The obtained approximation results strengthen the known results by more than two orders of magnitude.
About the Author
I. A. ShakirovRussian Federation
Iskander Asgatovich Shakirov
28 Nizametdinov str., Naberezhniye Chelny, 423806
References
1. Fejer L. Lebesguesche Konstanten und divergente Fourierreihen, J. Reine Angew. Math. 138, 22–53 (1910).
2. Fejer L. Sur les singularit´es de la s´erie de Fourier des fonctions continues, Ann. Ec. Norm. Sup. ´ 28, 63–103 (1911).
3. Szego G. Uber die Lebesgueschen Konstanten bei den Fourierchen Reihen ¨ , Math. Z. 9 (1–2), 163–166 (1921).
4. Hardy G.H. Note on Lebesgu´es Constants in the Theory of Fourier Series, J. London Math. Soc. s1–17 (1), 4–13 (1942).
5. Watson G.N. The constants of Landau and Lebesgue, Quart. J. Math. Ser. 1 (2), 310–318 (1930). [6] Wong R. Asymptotic approximations of integrals (SIAM, 2001).
6. Галкин П.В. Оценки для констант Лебега, Тр. МИАН СССР 109, 3–5 (1971).
7. Жук В.В., Натансон Г.И. Тригонометрические ряды Фурье и элементы теории аппроксимации. Учебное пособие (Л.: Изд-во ЛГУ, 1983).
8. Ахиезер Н.И. Лекции по теории аппроксимации (Наука, М., 1965). [10] Шакиров И.А. О неулучшаемой двусторонней оценке константы Лебега классического оператора Фурье, Вестн. Казанск. гос. энергетическ. ун-та 34 (2), 7–17 (2017).
9. Шакиров И.А. Об оптимальном приближении нормы оператора Фурье семейством логарифмических функций, Итоги науки и техн., Сер. Современ. матем. и ее прилож. Темат. обз. 139, 104–113 (2017).
10. Shakirov I.A. About the Optimal Replacement of the Lebesque Constant Fourier Operator by a Logarithmic Function, Lobachevskii J. Math. 39 (6), 841–846 (2018).
11. Shakirov I.A. On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions, J. Math. Sci. 241 (3), 354–363 (2019).
12. Шакиров И.А. Приближение константы Лебега оператора Фурье логарифмической функцией, Изв. вузов. Матем. (5), 86–93 (2022).
13. Zhao D. Some sharp estimates of the constants of Landau and Lebesgue, J. Math. Anal. Appl. 349 (1), 68–73 (2009).
14. Chen C., Choi J. Inequalities and asymptotic expansions for the constants of Landau and Lebesgue, Appl. Math. Comput. 248, 610–624 (2014).
15. Chen C., Choi J. Unified treatment of several asymptotic expansions concerning some mathematical constant, Appl. Math. Comput. 305, 348–363 (2017).
Review
For citations:
Shakirov I.A. Approximation of the Lebesgue constant of the Fourier operator by a logarithmic-fractional-rational function. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(11):75-85. (In Russ.) https://doi.org/10.26907/0021-3446-2023-11-75-85





















