Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Mean value of the part of the perimeter of a convex hull generated by a Poisson point process

https://doi.org/10.26907/0021-3446-2025-11-89-96

Abstract

This paper investigates vertex processes of the convex hull generated by inhomogeneous Poisson point processes within a parabola in the plane. Using distribution laws and the conditional distribution of the vertex processes, a stationary Markov process is constructed to find an exact expression for the mathematical expectation of the part of the perimeter between the initial vertices of the convex hull.

About the Authors

I. M. Khamdamov
University of Public Safety of the Republic of Uzbekistan
Uzbekistan

Isakjan M. Khamdamov

Zangiatinsky dist., Chorsy village, Tashkent, 100109 



Kh. M. Mamatov
University of Public Safety of the Republic of Uzbekistan
Uzbekistan

Khusniddin M. Mamatov

Zangiatinsky dist., Chorsy village, Tashkent, 100109 



Z. S. Chay
Tashkent University of Information Technologies; Tashkent International University of Education
Uzbekistan

Zoya S. Chay

108 Amir Temur Ave., Tashkent, 100089,

Yashnabad dist., Tuzel-2 massif, Imam Bukhari str., Tashkent, 100207 



E. R. Tadjikhodjayeva
Tashkent International University of Education
Uzbekistan

Elvira R. Tadjikhodjayeva

Yashnabad dist., Tuzel-2 massif, Imam Bukhari str., Tashkent, 100207 

 



References

1. Groeneboom P. Limit theorems for convex hulls, Probab. Theory Rel. Fields 79 (3), 327–368 (1988).

2. Cabo A.J., Groeneboom P. Limit theorems for functionals of convex hulls, Probab. Theory Rel. Fields 100, 31–55 (1994).

3. Hsing T. On the asymptotic distribution of the area outside a random convex hull in a disk, Ann. Appl. Probab. 4 (2), 478–493 (1994).

4. Hueter I. The convex hull of a normal sample, Adv. Appl. Probab. 26 (4), 855–875 (1994).

5. Groeneboom P. Convex hulls, 172 NAW 5/24 nr. 3 september 2023. Delft Institute Appl. Math., TU Delft. (2023).

6. Сенета Е. Правильно меняющаяся функция (Наука, М., 1985).

7. Khamdamov I.M. Properties of convex hull generated by inhomogeneous Poisson point process, Уфимск. матем. журн. 12 (3), 83–98 (2020).

8. Khamdamov I.M. Asymptotic analysis of the functionals of the vertex process of the convex hull, Uzbek Math. J. 67 (2), 109–114 (2023).

9. Khamdamov I.M. On limit theorem for the number of vertices of the convex hulls in a unit disk, J. Sib. Fed. Univ. Math. Phys. 13 (3), 275–284 (2020).


Review

For citations:


Khamdamov I.M., Mamatov Kh.M., Chay Z.S., Tadjikhodjayeva E.R. Mean value of the part of the perimeter of a convex hull generated by a Poisson point process. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(11):89-96. (In Russ.) https://doi.org/10.26907/0021-3446-2025-11-89-96

Views: 35


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)