On Fourier and renormalization group transformations in the generalized hierarchical fermionic model
https://doi.org/10.26907/0021-3446-2025-11-83-88
Abstract
On a two-dimensional generalized hierarchical lattice, the distance between opposite vertices of a unit cell square differs from the distance between adjacent vertices and is a new parameter of the model. At each lattice vertex, the field is defined by a set of four components that are generators of the Grassmann algebra. The Gaussian part of the model is determined by a quadratic Hamiltonian which is invariant under the renormalization group transformation. The non-Gaussian part of the model is defined by a Grassmann-valued “free measure density”, whose sets of coefficients are treated as points in a two-dimensional projective plane. The renormalization group transformation in the space of these coefficients is a homogeneous transformation of degree 4 in the projective space. The commutation relation between the Fourier transform in the space of “densities” and the renormalization group transformation is investigated.
About the Authors
M. D. MissarovRussian Federation
Mukadas D. Missarov
18 Kremlyovskaya str., Kazan, 420008
D. A. Khajrullin
Russian Federation
Dmitrij A. Khajrullin
18 Kremlyovskaya str., Kazan, 420008
References
1. Dyson F.J. Existence of a phase-transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys. 12 (2), 91–107 (1969).
2. Missarov M.D. New variant of the fermionic model on the hierarchical two-dimensional lattice, p-Adic Numb. Ultrametric Anal. Appl. 12 (2), 163–170 (2020).
3. Миссаров М.Д., Хайруллин Д.А. Преобразование ренормализационной группы в обобщенной фермионной иерархической модели, Изв. РАН. Сер. матем. 87 (5), 164–176 (2023)
Review
For citations:
Missarov M.D., Khajrullin D.A. On Fourier and renormalization group transformations in the generalized hierarchical fermionic model. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(11):83-88. (In Russ.) https://doi.org/10.26907/0021-3446-2025-11-83-88





















