Nonlinear stationary differential equations of fractional order 1 < α < 2 on metric star graphs
https://doi.org/10.26907/0021-3446-2025-11-42-47
Abstract
In this paper, nonlinear stationary fractional-in-space differential equations with order 1 < α < 2 on a metric star graph with three finite bonds are considered. At the branching point of the star grap, the continuity condition for the weight is satisfied, and the generalized Kirchhoff rule is applied. They are found the exact solutions to nonlinear stationary fractional equations on the star graph. These solutions can be extended to star graphs with any number of bonds.
About the Author
К. К. SabirovRussian Federation
Karimjon K. Sabirov
49 Islam Karimov str., Tashkent, 100066
References
1. Hilfer R. Applications of fractional calculus in physics (Stuttgart, Germany, 2000).
2. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations (Amsterdam, the Netherlands, 2006).
3. Umarov S. Introduction to fractional and pseudo-differential equations with singular symbols (Springer, 2015).
4. Kottos T., Smilansky U. Periodic orbit theory and spectral statistics for quantum graphs, Annals Phys. 274 (1), 76—124 (1999).
5. Exner P., Kovarik H. Quantum waveguides (Springer, 2015).
6. Sobirov Z., Matrasulov D., Sabirov K., Sawada S., Nakamura K. Integrable nonlinear Schr¨odinger equation on simple networks: Connection formula at vertices, Phys. Rev. E 81, 066602 (2010).
7. Adami R., Cacciapuoti C., Finco D., Noja D.Fast solitons on star graphs, Rev. Math. Phys. 23 (04), 409–451 (2011).
8. Adami R., Cacciapuoti C., Finco D., Noja D. Stationary states of NLS on star graphs, EPL 100 (1), 19901 (2012).
9. Sabirov K.K., Sobirov Z.A., Babajanov D., Matrasulov D.U. Stationary nonlinear Schr¨odinger equation on simplest graphs, Phys. Lett. A 377 (12), 860–865 (2013).
10. Noja D. Nonlinear Schr¨odinger equation on graphs: recent results and open problems, Philosoph. Trans. Royal Soc. A: Math., Phys. Engin. Sci. 372 (2007), 20130002 (2014).
11. Sabirov K. K., Yusupov J. R., Matyokubov Kh. Sh., Susanto H., Matrasulov D.U. Networks with point-like nonlinearities, Наносистемы: физика, химия, матем. 13 (1), 30–35 (2022).
Review
For citations:
Sabirov К.К. Nonlinear stationary differential equations of fractional order 1 < α < 2 on metric star graphs. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(11):42-47. (In Russ.) https://doi.org/10.26907/0021-3446-2025-11-42-47





















