On a class of the third-order Holder matrix-functions admitting an effective factorization
https://doi.org/10.26907/0021-3446-2025-11-29-41
Abstract
A homogeneous linear conjugation problem on a closed contour is considered for a three-dimensional piecewise analytic vector. To each of its solutions there corresponds a triple of functions that are the ratios of the boundary values on the contour of the respective components of this solution. Relations are given that connect the elements of the H-continuous matrix-function of the problem and ensure the existence of two of its solutions for which the corresponding components of the associated triples differ by rational factors, while the problem itself admits a closed-form solution.
About the Author
S. N. KiyasovRussian Federation
Sergey N. Kiyasov
18 Kremlyovskaya str., Kazan, 420008
References
1. Векуа Н.П. Системы сингулярных интегральных уравнений и некоторые граничные задачи (Наука, М., 1970).
2. Киясов С.Н. Об одном дополнении к общей теории задачи линейного сопряжения для кусочно аналитического вектора, Сиб. матем. журн. 59 (2), 369–377 (2018).
3. Cˆamara M.C., Rodman L., Spitkovsky I.M. One sided invertibility of matrices over commutative rings, corona problems, and Toeplitz operators with matrix symbols, Linear Algebra Appl. 459 (4), 58–82 (2014).
4. Киясов С.Н. Некоторые классы задач линейного сопряжения для трехмерного вектора, разрешимых в замкнутой форме, Сиб. матем. журн. 56 (2), 389–408 (2015).
5. Адуков В.М. Факторизация Винера–Хопфа мероморфных матриц-функций, Алгебра и анализ 4 (1), 54–74 (1992).
Review
For citations:
Kiyasov S.N. On a class of the third-order Holder matrix-functions admitting an effective factorization. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(11):29-41. (In Russ.) https://doi.org/10.26907/0021-3446-2025-11-29-41





















