Large deviation of generalized fractional Brownian motion and its application
https://doi.org/10.26907/0021-3446-2025-11-13-28
Abstract
In this paper, we investigate large deviations of the local time of a self-similar Gaussian process called the generalized fractional Brownian motion process. This process, introduced by M. Zili [4] as an extension of the sub-fractional Brownian motion and fractional Brownian motion Gaussian processes, represents a significant breakthrough in stochastic processes. It provides a more flexible and robust approach to modeling natural phenomena and complex systems.
Our study starts by presenting large deviation estimates for the local time of this process. Additionally, we establish the law of iterated logarithm for the corresponding local time, further enhancing understanding of its behavior.
About the Authors
H. AhalliMorocco
Hajar Ahalli
BP 524 BV Mohammed VI, Oujda, 60000
A. Aslimani
Morocco
Abderrahim Aslimani
BP 524 BV Mohammed VI, Oujda, 60000
S. Moussaten
Morocco
Soufiane Moussaten
BP 524 BV Mohammed VI, Oujda, 60000
References
1. Kolmogorov A.N. Wienersche spiralen und einige andere interessante Kurven im Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26, 115–118 (1940).
2. Mandelbrot B.B., Van Ness J.W. Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4), 422–437 (1968).
3. Bojdecki T., Gorostiza L.G., Talarczyk A. Sub-fractional Brownian motion and its relation to occupation times, Stat. Prob. Lett. 69 (4), 405–419 (2004).
4. Zili M. Generalized fractional Brownian motion, Modern Stochastics: Theory Appl. 4 (1), 15–24 (2017).
5. Zili M. On the generalized fractional Brownian motion, Math. Models Comput. Simul. 10 (6), 759–769 (2018).
6. Song X. Large deviations for functionals of some self-similar Gaussian processes, Stochastics 93 (3), 311–336 (2021).
7. Chen X., Li W.V., Rosi´nski J., Shao Qi.-M. Large deviations for local times and intersection local times of fractional Brownian motions and Riemann–Liouville processes, Ann. Probab. 39 (2), 729–778 (2011).
8. Berman S.M. Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (2), 277–299 (1969).
9. Geman D., Horowitz J. Occupation densities, Ann. Probab. 8 (1), 1–67 (1980).
10. Berman S.M. Gaussian processes with stationary increments: local times and sample function properties, Ann. Math. Stat. 41 (4), 1260–1272 (1970).
11. Xiao Y. H¨older conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Relat. Fields 109, 129–157 (1997).
12. Mendy I. On the local time of sub-fractional Brownian motion, Ann. Math. Blaise Pascal 17 (2), 357–374 (2010).
13. Lei P., Nualart D. A decomposition of the bifractional Brownian motion and some applications, Stat. Probab. Lett. 79 (5), 619–624 (2009).
14. Bardina X., Bascompte D. A decomposition and weak approximation of the sub-fractional Brownian motion, Preprint, Departament de Matematiques, UAB (Barcelona, 2009).
15. de Ch´avez J.R., Tudor C. A decomposition of sub-fractional Brownian motion, Math. Rep. 11 (61), 67–74 (2009).
16. Janson S. Gaussian Hilbert Spaces (Cambridge Univ. Press, Cambridge, 1997).
17. van der Vaart A.W., van Zanten J.H. Reproducing kernel Hilbert spaces of Gaussian priors, IMS Collect. 3, 200–222 (2008).
18. Decreusefond L., Ust¨unel A.S. ¨ Stochastic analysis of the fractional Brownian motion, Potential Anal. 10, 177–214 (1999).
19. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives: theory and applications (Gordon and Breach Sci., Yverdon, 1993).
20. Aronszajn N. Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (3), 337–404 (1950).
21. Dembo A., Zeitouni O. Large deviations techniques and applications (Springer Berlin, Heidelberg, 2009).
22. Breiman L. Probability (Addison-Wesley, Reading, 1968).
23. Ledoux M., Talagrand M. Probability in Banach Spaces: isoperimetry and processes (Springer Berlin, Heidelberg, 1991).
Review
For citations:
Ahalli H., Aslimani A., Moussaten S. Large deviation of generalized fractional Brownian motion and its application. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(11):13-28. (In Russ.) https://doi.org/10.26907/0021-3446-2025-11-13-28





















