Fields over which matrices can be represented as the sum of potent and nilpotent matrices
https://doi.org/10.26907/0021-3446-2025-10-78-82
Abstract
We study fields over which every matrix can be represented as a sum of two potent matrices and a nilpotent matrix. In particular, it is shown that over a field P every matrix can be represented as a sum of two idempotent matrices and a nilpotent matrix exactly when either P = F2, or P = F3.
About the Authors
A. N. AbyzovRussian Federation
Adel N. Abyzov
18 Kremlyovskaya str., Kazan, 420008,
9 Moskovsky Ave., Saint Petersburg, 190031
D. T. Tapkin
Russian Federation
Danil T. Tapkin
18 Kremlyovskaya str., Kazan, 420008,
9 Moskovsky Ave., Saint Petersburg, 190031
References
1. Breaz S., C˘alug˘areanu G., Danchev P., Micu T. Nil-clean matrix rings, Linear Algebra Appl. 439 (10), 3115–3119 (2013).
2. Абызов А.Н., Мухаметгалиев М.И. О некоторых матричных аналогах малой теоремы Ферма, Матем. заметки 101 (2), 163–168 (2017).
3. Абызов А.Н., Тапкин Д.Т. Кольца, матрицы над которыми представимы в виде суммы идемпотентной матрицы и q-потентной матрицы, Сиб. матем. журн. 62 (1), 3–18 (2021).
4. Breaz S. Matrices over finite fields as sums of periodic and nilpotent elements, Linear Algebra Appl. 555, 92–97 (2018).
5. Abyzov A.N., Tapkin D.T. When is every linear transformation a sum of a q-potent one and a locally nilpotent one?, Linear Algebra Appl. 709, 124–131 (2025).
6. Abyzov A.N., Tapkin D.T. When is every matrix over a ring the sum of two tripotents?, Linear Algebra Appl. 630, 316–325 (2021).
7. Абызов А.Н., Тапкин Д.Т. Представимость матриц над коммутативными кольцами в виде суммы двух потентных матриц, Сиб. матем. журн. 65 (6), 1039–1060 (2024).
8. Hirano Y., Tominaga H. Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (2), 161–164 (1988).
9. Tang G., Zhou Y., Su H. Matrices over a commutative ring as sums of three idempotents or three involutions, Linear Multilinear Algebra 67 (2), 267–277 (2019).
10. Pazzis C. de S. On sums of idempotent matrices over a field of positive characteristic, Linear Algebra Appl. 433 (4), 856–866 (2010).
Review
For citations:
Abyzov A.N., Tapkin D.T. Fields over which matrices can be represented as the sum of potent and nilpotent matrices. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):78-82. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-78-82





















