On systems of semilinear fractional differential inclusions of fractional order with nondensely defined operators in Banach spaces
https://doi.org/10.26907/0021-3446-2025-10-64-77
Abstract
In this paper, systems of semilinear differential inclusions of fractional orders are studied. It is assumed that the linear parts of inclusions are represented by Hille-Yosida operators in Banach spaces. The nonlinear parts of inclusions are multivalued Caratheodory type maps, depending on time and a finite set of functions. To study the problem of the existence of solutions to such a system, the theory of fractional mathematical analysis, the theory of generalized metric spaces, and also the theory of topological degree for multivalued condensing maps are used. We present a multivalued resolving operator for this system and describe its properties. It is shown, in particular, that this multioperator is condensing with respect to a special vector measure of noncompactness. This makes it possible, using some fixed point theorems for the specified multioperators, to prove local and global existence theorems for integral solutions of a given system. In the latter case, the compactness of the set of such solutions and the upper semicontinuous dependence of the set of solutions on the initial data are also justified.
About the Authors
V. V. ObukhovskiiRussian Federation
Valeri V. Obukhovskii
86 Lenin str., Voronezh, 394043
G. G. Petrosyan
Russian Federation
Garik G. Petrosyan
86 Lenin str., Voronezh, 394043
T. A. Ul’vacheva
Russian Federation
Tat’yana A. Ul’vacheva
86 Lenin str., Voronezh, 394043
V. A. Bocharov
Russian Federation
Vladislav A. Bocharov
86 Lenin str., Voronezh, 394043
References
1. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations (Elsevier Sci. B.V., North-Holland Math. Stud., Amsterdam, 2006).
2. Podlubny I. Fractional differential equations (Acad. Press, San Diego, 1999).
3. Tarasov V. Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media (Springer, London, New York, 2010).
4. Zhou Y. Fractional evolution equations and inclusions: analysis and control (Elsevier Acad. Press, London, 2016).
5. Kamenskii M., Obukhovskii V., Zecca P. Condensing multivalued maps and semilinear differential inclusions in Banach spaces (Walter de Gruyter, Berlin, New-York, 2001).
6. Звягин В.Г., Ратинер Н.М. Топологические методы в теории нелинейных фредгольмовых отображений и их приложения (Наука, М., 2019).
7. Appell J., Lopez B., Sadarangani K. Existence and uniqueness of solutions for a nonlinear fractional initial value problem involving Caputo derivatives, J. Nonlinear Var. Anal. 2, 25–33 (2018).
8. Benedetti I., Obukhovskii V., Taddei V. On generalized boundary value problems for a class of fractional differential inclusions, Fract. Calc. Appl. Anal. 20, 1424–1446 (2017).
9. Gomoyunov M.I. Fractional derivatives of convex Lyapunov functions and control problems in fractional order systems, Fract. Calc. Appl. Anal. 21, 1238–1261 (2018).
10. Gomoyunov M.I. Approximation of fractional order conflict-controlled systems, Progr. Fract. Diff. Appl. 5, 143–155 (2019).
11. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.C. On semilinear fractional order differential inclusions in Banach spaces, Fixed Point Theory 18 (1), 269–292 (2017).
12. Kamenskii M., Obukhovskii V., Petrosyan G., Yao J.C. Existence and approximation of solutions to nonlocal boundary value problems for fractional differential inclusions, J. Fixed Point Theory Appl. 2 (2019).
13. Ke T.D., Obukhovskii V., Wong N.C., Yao J.C. On a class of fractional order differential inclusions with infinite delays, Appl. Anal. 92, 115–137 (2013).
14. Петросян Г.Г. Об антипериодической краевой задаче для полулинейного дифференциального включения дробного порядка с отклоняющимся аргументом в банаховом пространстве, Уфимск. матем. журн. 12 (3), 71–82 (2020).
15. Zhang Z., Liu B. Existence of mild solutions for fractional evolution equations, Fixed Point Theory 15, 325–334 (2014).
16. Zhou Y., Jiao F. Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl. 59, 1063–1077 (2010).
17. Obukhovskii V., Zecca P. On semilinear differential inclusions in Banach spaces with nondensely defined operators, J. Fixed Point Theory Appl. 9 (1), 85–100 (2011).
18. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Топологические методы в теории неподвижных точек многозначных отображений, Успехи матем. наук 35 (1), 59–126 (1980).
19. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений, 2-е изд. (Либриком, М., 2011).
20. Obukhovskii V., Gel’man B. Multivalued maps and differential inclusions: elements of theory and applications (World Sci., Hackensack, NJ, 2020).
21. Ахмеров Р.Р., Каменский М.И, Потапов А.С., Родкина А.Б., Садовский Б.Н., Меры некомпактности и уплотняющие операторы (Наука, Новосибирск, 1986).
22. Kellerman H., Hieber M. Integrated semigroups, J. Funct. Anal. 84 (1), 160–180 (1989).
23. Thieme H.R. Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (2), 416–447 (1990).
24. Diestel J., Ruess W.M., Schachermayer W. On weak compactness in L 1 (mu , X), Proc. Amer. Math. Soc. 118 (2), 447–453 (1993).
25. Qin Y. Nonlinear parabolic-hyperbolic coupled systems and their attractors. Operator theory: advances and applications (Birkhauser Verlag, Basel, 2008).
Review
For citations:
Obukhovskii V.V., Petrosyan G.G., Ul’vacheva T.A., Bocharov V.A. On systems of semilinear fractional differential inclusions of fractional order with nondensely defined operators in Banach spaces. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):64-77. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-64-77





















