On a topologically uniformly continuous map
https://doi.org/10.26907/0021-3446-2025-10-44-49
Abstract
Let X and Y be metrizable spaces. A map X —> Y is called topologically uniformly continuous, if for every admissible metric р on X there is an admissible metric a on Y such that for the metric spaces (X, p) and (Y, a) the map (X, p) —^ (Y, a) is uniformly continuous. In this article such maps are investigated. As the main result, it is shown that, in a certain sense, topologically uniformly continuous maps are close to perfect maps.
About the Author
A. S. BedritskiyBelarus
Alexander S. Bedritskiy
4 Nezavisimosti Ave., Minsk, 220030
References
1. Энгелькинг Р. Общая топология. Пер. с англ. (Мир, М., 1986).
2. Beer G.A., Himmelberg C.J., Prikry K., van Vleck F.S. The locally finite topology on 2 X, Proc. Amer. Math. Soc. 101 (1), 168–172 (1987).
3. Costantini C., Vitolo P. On the infimum of the Hausdorff metric topologies, Proc. London Math. Soc. s3-70, 441–480 (1995).
4. Бедрицкий А.С., Тимохович В.Л. О топологиях экспоненты метризуемого топологического пространства, Тр. Ин-та матем. 31 (2), 15–27 (2023).
5. Бедрицкий А.С., Тимохович В.Л. О функториальных свойствах некоторых топологий гиперпространства, Изв. вузов. Матем. (2), 15–28 (2025).
6. Hausdorff F. Erweiterung einer Hom¨oomorphie, Fundam. Math. 16 (1), 353–360 (1930).
7. Тимохович В.Л., Фролова Д.С. О свойствах инфимальной топологии пространства отображений, Изв. вузов. Матем. 4, 87–99 (2016).
Review
For citations:
Bedritskiy A.S. On a topologically uniformly continuous map. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):44-49. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-44-49





















