Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Direct and inverse mean value properties for polylinear functions and their application

https://doi.org/10.26907/0021-3446-2025-9-3-12

Abstract

This paper is devoted to the formulation and proof of the theorems on the mean value of a polylinear function, similar to the direct and inverse theorems on the mean value of harmonic functions. It is proved that the value of an arbitrary polylinear function fP (x) at the central point of G—an arbitrary n-dimensional coordinate parallelepiped—is equal to the mean value of the function fP (x) over the set of k-dimensional faces G for any k \in \{ 0, . . . , n\} . Based on this, it is justified that just once, by calculating the value of the polylinear continuation fP (x) of an arbitrary Boolean function fB(x) at the central point of an n-dimensional unit cube, one can find the number of Boolean vectors on which the Boolean function fB(x) takes the value 1 and thereby, in particular, determine the satisfiability of the Boolean function fB(x). It has also been established that such a property is characteristic only of polylinear functions, i.e., it has been proven that if for any G — n-dimensional coordinate parallelepiped and at least for some number k \in \{ 0, . . . , n\} , the value of the continuous function f(x) at the central point G is equal to the mean value of the function f(x) over the set of k-dimensional faces of G, then the function f(x) is polylinear.

About the Author

D. N. Barotov
Financial University under the Government of the Russian Federation
Russian Federation

Dostonjon Numonjonovich Barotov

49 Leningradsky Ave., Moscow, 125167



References

1. Brown F.M. Boolean reasoning: the logic of Boolean equations (Dover Publications, 2003).

2. Hammer P.L., Rudeanu S. Boolean methods in operations research and related areas (Springer Science & Business Media, 2012).

3. Bard G.V. Algorithms for solving linear and polynomial systems of equations over finite fields, with applications to cryptanalysis (Univ. Maryland, College Park, 2007).

4. Abdel-Gawad A.H., Atiya A.F., Darwish N.M. Solution of systems of Boolean equations via the integer domain, Inform. Sci. 180 (2), 288–300 (2010), DOI : 10.1016/j.ins.2009.09.010.

5. Gu J., Gu Q., Du D. On optimizing the satisfiability (SAT) problem, J. Comput. Sci. Technology 14, 1–17 (1999), DOI : 10.1007/BF02952482.

6. Barotov D., Osipov A., Korchagin S., Pleshakova E., Muzafarov D., Barotov R., Serdechnyy D. Transformation Method for Solving System of Boolean Algebraic Equations, Mathematics 9 (24), 3299 (2021), DOI : 10.3390/math9243299.

7. Barotov D.N., Barotov R.N. Polylinear Transformation Method for Solving Systems of Logical Equations, Mathematics 10 (6), 918 (2022), DOI : 10.3390/math10060918.

8. Barotov D.N. Target Function without Local Minimum for Systems of Logical Equations with a Unique Solution, Mathematics 10 (12), 2097 (2022), DOI : 10.3390/math10122097.

9. Pakhomchik A.I., Voloshinov V.V., Vinokur V.M., Lesovik G.B. Converting of Boolean expression to linear equations, inequalities and QUBO penalties for cryptanalysis, Algorithms 15 (2), 33 (2022), DOI : 10.3390/a15020033.

10. Burek E., Wro´nski M., Ma´nk K., Misztal M. Algebraic attacks on block ciphers using quantum annealing, IEEE Trans. Emerging Topics Comput. 10 (2), 678–689 (2022), DOI : 10.1109/TETC.2022.3143152.

11. Barotov D.N., Barotov R.N., Soloviev V., Feklin V., Muzafarov D., Ergashboev T., Egamov K. The Development of Suitable Inequalities and Their Application to Systems of Logical Equations, Mathematics 10 (11), 1851 (2022), DOI : 10.3390/math10111851.

12. Файзуллин Р.Т., Дулькейт В.И., Огородников Ю.Ю. Гибридный метод поиска приближенного решения задачи 3-выполнимость, ассоциированной с задачей факторизации, Тр. ИММ УрО РАН 19 (2), 285–294 (2013).

13. Баротов Д.Н., Баротов Р.Н. Полилинейные продолжения некоторых дискретных функций и алгоритм их нахождения, Вычисл. методы и программирование 24 (1), 10–23 (2023), DOI : 10.26089/NumMet.v24r102.

14. Баротов Д.Н., Судаков В.А. О неравенствах между выпуклыми, вогнутыми и полилинейными продолжениями булевых функций, Преп. Ин-та прикл. матем. им. МВ Келдыша РАН (30), 1–13 (2024), DOI : 10.20948/prepr-2024-30.

15. Баротов Д.Н., Баротов Р.Н. Конструирование гладких выпуклых продолжений булевых функций, Вестн. российск. ун-тов. Матем. 29 (145), 20–28 (2024), DOI : 10.20310/2686-9667-2024-29-145-20-28.

16. Баротов Д.Н. Выпуклое продолжение булевой функции и его приложения, Дискретный анализ и исследов. операций 31 (1), 5–18 (2024), DOI : 10.33048/daio.2024.31.779.

17. Баротов Д.Н. О существовании и свойствах выпуклых продолжений булевых функций, Матем. заметки 115 (4), 533–551 (2024), DOI : 10.4213/mzm14105.

18. Баротов Д.Н. Вогнутые продолжения булевых функций и некоторые их свойства и приложения, Изв. Иркутск. гос. ун-та. Сер. Матем. 49, 105–123 (2024) (принята к печати), DOI : 10.26516/1997-7670.2024.49.105.

19. Курант Р. Уравнения с частными производными (Мир, М., 1964).


Review

For citations:


Barotov D.N. Direct and inverse mean value properties for polylinear functions and their application. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;1(9):3-12. (In Russ.) https://doi.org/10.26907/0021-3446-2025-9-3-12

Views: 68


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)