Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of piecewise linear second order differential equations

https://doi.org/10.26907/0021-3446-2025-7-82-95

Abstract

The behavior of trajectories of solutions to piecewise linear second order differential equations is being studied. These equations are widely used in mechanics, electrical engineering and automatic control theory. Of particular interest are the conditions for the emergence of limit cycles in the vicinity of the rest region of a second order piecewise linear differential equation with a discontinuous switching line. It has been established that if a region of rest (consisting of rest points) exists, then it remains inside the limit cycle. One of the primary tasks is to determine the region of rest that appears on the line of stitching solutions. In the course of the work, new relations were obtained that provide limited solutions to piecewise linear equations. Using these new conditions, phase portraits are constructed that take into account the coefficients of the equations. Conditions have also been found under which there is no rest region. To solve these problems, the method of stitching solutions from two half-planes was used.

About the Authors

E. M. Mukhamadiev
Vologda State University
Russian Federation

Ergashboy Mirzoevichv Mukhamadiev

15 Lenina str., Vologda, 160000



I. J. Nurov
Tajik National University
Tajikistan

Iskhokboy Jumaevich Nurov

17 Rudaki str., Dushanbe, 735803



G. E. Grishanina
State University Dubna
Russian Federation

Gulnara Ergashevna Grishanina

19 Universitetskaya str., Dubna, 141980



M. Z. Ubaidov
Tajik National University
Tajikistan

Murtazo Zubaidovich Ubaidov

17 Rudaki str., Dushanbe, 735803



References

1. Андронов А.А., Витт А.А., Хайкин С.Э. Теория колебаний, Изд. 2 (Физматлиз, 1959).

2. Юмагулов М.Г. Обыкновенные дифференциальные уравнения. Теория и приложения (Москва-Ижевск, 2008).

3. Leine R.I., van Campen D.H. Bifurcation phenomena in non-smooth dynamical systems, European J. Mech. A/Solids 25, 595–616 (2006).

4. Мухамадиев Э.М., Нуров И.Д., Халилова М.Ш. Предельные циклы кусочно-линейных дифференциальных уравнений второго порядка, Уфимск. матем. журн. 6 (1), 84–93 (2014). URL : http://www.mathnet.ru/rus/agreement.

5. Баутин Н.Н., Леонтович Е.А. Методы и приемы качественного исследования динамических систем на плоскости (Наука, М., 1976).

6. Филиппов А.Ф. Дифференциальные уравнения с разрывной правой частью (Наука, М., 1985).

7. Демидович Б.П. Лекции по математической теории устойчивости (Наука, М., 1967).

8. Красносельский М.А. Оператор сдвига по траекториям дифференциальных уравнений (Наука, М., 1966).


Review

For citations:


Mukhamadiev E.M., Nurov I.J., Grishanina G.E., Ubaidov M.Z. Study of piecewise linear second order differential equations. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(7):82-95. (In Russ.) https://doi.org/10.26907/0021-3446-2025-7-82-95

Views: 10


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)