

Numerical solution of the problem of finding two unknowns in time-fractional diffusion equations
https://doi.org/10.26907/0021-3446-2025-7-36-52
Abstract
We study an inverse problem for a time-fractional diffusion equation with initial-boundary and overdetermination conditions.This inverse problem aims to determine a time varying coefficient and source in the equation with overdetermination integral conditions. First, we establish the unique existence of the classical solution using the Fourier method, Gronwall inequality for direct problem. Second, by using the fixed point theorem in Banach space, the local existence and uniqueness of this inverse problem are obtained. To verify the theoretical results, a numerical solution to the problem was constructed using the finite difference method. Finally, a numerical example is presented to show the effectiveness of the proposed method.
About the Authors
J. J. JumaevUzbekistan
Jonibek Jamolovich Jumaev
46 University str., Tashkent, 100170 ,
11 M. Ikbol str., Bukhara, 200118
Z. R. Bozorov
Uzbekistan
Zavqiddin Ravshanovich Bozorov
46 University str., Tashkent, 100170 ,
11 M. Ikbol str., Bukhara, 200118
D. K. Durdiev
Uzbekistan
Durdimurod Kalandarovich Durdiev
46 University str., Tashkent, 100170 ,
11 M. Ikbol str., Bukhara, 200118
References
1. Agarwal R., Sharma U.P., Agarwal R.P. Bicomplex Mittag-Leffler function and associated properties, J. Nonlinear Sci. Appl. 15 (1), 48–60 (2022).
2. Baglan I. Determination of a coefficient in a quasilinear parabolic equation with periodic boundary condition, Inverse Probl. Sci. Engin. 23 (5), 884–900 (2015), DOI: 10.1080/17415977.2014.947479.
3. Будак Б.М., Самарский А.А., Тихонов А.Н. Сборник задач по математической физике (Наука, М., 1979).
4. Kanca F. Inverse Coefficient Problem of the Parabolic Equation with Periodic Boundary and Integral Overdetermination Conditions, Abstract Appl. Anal. (5) (2015), DOI: 10.1155/2013/659804.
5. Ivanchov M.I., Pabyrivs’ka N. Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditions, Ukr. Math. J. 53 (5), 674–684 (2001).
6. Durdiev D.K., Jumaev J.J., Atoev D.D. Convolution kernel determining problem for an integro-differential heat equation with nonlocal initial-boundary and overdetermination conditions, J. Math. Sci. 271 (1), 1–10 (2023), DOI: 10.1007/s10958-023-06263-x.
7. Liao W., Dehghan M., and Mohebbi A. Direct numerical method for an inverse problem of a parabolic partial differential equation, J. Comput. Appl. Math. 232 (2), 351–360 (2009).
8. Oussaeif T.E., Abdelfatah B. An Inverse Coefficient Problem for a Parabolic Equation under Nonlocal Boundary and Integral Overdetermination Conditions, Intern. J. Part. Diff. Equat. Appl. 2 (3), 38–43 (2014).
9. Kanca F. The inverse problem of the heat equation with periodic boundary and integral overdetermination conditions, J. Inequal. Appl. 108, 1–9 (2013).
10. Cannon J.R., Lin Y., and Wang S. Determination of a control parameter in a parabolic partial differential equation, ANZIAM 33, 149–163 (1991), DOI: 10.1017/S0334270000006962.
11. Huzyk N.M. Nonlocal inverse problem for a parabolic equation with degeneration, Ukr. Math. J. 65 (6), 847–863 (2013).
12. Durdiev D.K., Jumaev J.J. Inverse Coefficient Problem for a Time-Fractional Diffusion Equation in the Bounded Domain, Lobachevskii J. Math. 44 (2), 548–557 (2023).
13. Durdiev D.K., Rahmonov A.A. A multidimensional diffusion coefficient determination problem for the timefractional equation, Turkish J. Math. 46 (6), 2250–2263 (2022), DOI: 10.55730/1300-0098.3266.
14. Durdiev D.K., Rahmonov A.A., Bozorov Z.R. A two-dimensional diffusion coefficient determination problem for the time-fractional equation, Math. Methods Appl. Sci. 44 (13), 10753–10761 (2021), DOI: 10.1002/mma.7442.
15. Subhonova Z.A., Rahmonov A.A. Problem of determining the time dependent coefficient in the fractional diffusion-wave equation, Lobachevskii J. Math. 42 (15), 3747–3760 (2021).
16. Sultanov M.A., Durdiev D.K., Rahmonov A.A. Construction of an Explicit Solution of a Time-Fractional Multidimensional Differential Equation, Mathematics 9 (17), 2052 (2021).
17. Турдиев Х.Х. Обратные коэффициентные задачи для временно-дробного волнового уравнения с обобщенной производной Римана–Лиувилля по времени, Изв. вузов. Матем. (10), 46–59 (2023).
18. Дурдиев У.Д. Обратная задача об источнике для уравнения вынужденных колебаний балки, Изв. вузов. Матем. (8), 10–22 (2023).
19. Дурдиев Д.К., Жумаев Ж.Ж. Обратная задача определения ядра интегро-дифференциального уравнения дробной диффузии в ограниченной области, Изв. вузов. Матем. (10), 22–35 (2023), DOI: 10.26907/0021-3446-2023-10-22-35.
20. Дурдиев Д.К., Болтаев А.А., Рахмонов А.А. Задача определения ядра типа свертки в уравнении Мура– Гибсона–Томсона третьего порядка, Изв. вузов. Матем. (12), 3–16 (2023).
21. Hazanee A., Lesnic D., Ismailov M., Kerimov N. Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions, Appl. Math. Comput. 346 (C), 800–815 (2019).
22. Colombo F. An inverse problem for a parabolic integro-differential model in the theory of combustion, Physica D: Nonlinear Phenomena 236 (2), 81–89 (2007), DOI: 10.1016/j.physd.2007.07.012.
23. Durdiev D.K., Nuriddinov Z.Z. Determination of a multidimensional kernel in some parabolic integro-differential equation, Журн. СФУ. Сер. Матем. Физ. 14 (1), 117–127 (2021).
24. Durdiev D.K., Zhumaev Zh.Zh. Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor, Math. Methods Appl. Sci. 45 (14), 8374–8388 (2022).
25. Durdiev D.K., Zhumaev Zh.Zh. One-dimensional inverse problems of finding the kernel of integro-differential heat equation in a bounded domain, Ukr. Math. J. 73 (11), 1723–1740 (2022).
26. Durdiev D.K., Zhumaev Zh.Zh. Problem of determining a multidimensional thermal memory in a heat conductivity equation, Methods Funct. Anal. Topology 25 (3), 219–226 (2019).
27. Дурдиев Д.К., Жумаев Ж.Ж. Задача определения тепловой памяти проводящей среды, Дифференц. уравнения 56 (6), 796–807 (2020).
28. Janno J., Wolfersdorf L. Inverse problems for identification of memory kernels in heat flow, J. Inv. Ill-Posed Probl. 4 (1), 39–66 (1996).
29. Durdiev D.K. and Durdiev D.D. An inverse problem of finding a time-dependent coefficient in a fractional diffusion equation, Turkish J. Math. 47 (5), 1438–1452 (2023).
30. Kardashevsky A.M., Popov V.V. , Guo Z. Recovery of the non-stationary component of the right-hand side of the subdiffusion equation, Eurasian J. Matр. Comput. Appl. 12 (1), 83–93 (2024).
31. Lingde Su, Jian Huang, Vasil’ev V., Ao Li, Kardashevsky A.M. A numerical method for solving retrospective inverse problem of fractional parabolic equation, J. Comput. Appl. Math. 413 (1), 114366 (2022), DOI: 10.1016/j.cam.2022.114366.
32. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).
33. Kang B., Koo N. A note on generalized singular Gronwall inequalities, J. Chung. Math. Soc. 31 (1), 161–166 (2018).
34. Lakshmikantham V., Leela S., and Devi J.V. Theory of fractional dynamic systems (Cambridge Scientic Publishers Ltd, Cambridge, 2009).
35. Колмогоров А., Фомин С. Элементы теории функций и функционального анализа (Наука, М., 1972).
36. Changpin L., Fanhai Z. Finite difference methods for fractional differential equations, Internat. J. Bifurcat. Chaos Appl. Sci. Engin. 22 (4), 1–28, 1230014 (2012), DOI: 10.1142/S0218127412300145.
Review
For citations:
Jumaev J.J., Bozorov Z.R., Durdiev D.K. Numerical solution of the problem of finding two unknowns in time-fractional diffusion equations. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(7):36-52. (In Russ.) https://doi.org/10.26907/0021-3446-2025-7-36-52