

Problem of determining a multidimensional kernel in a diffusion-wave equation with a fractional time derivative
https://doi.org/10.26907/0021-3446-2025-7-20-35
Abstract
For a time-fractional wave equation with an integral term of the convolution type, we study the direct Cauchy problem and the inverse problem of finding a multidimensional kernel of the integral, depending not only on the time variable, but also on the first n — 1 components of the spatial variable x = (x1,x2,... ,xn) e Rn. In this case, the known problems are the Cauchy data specified at time t = 0 and the redefinition condition on the hyperplane xn = 0. Problems are equivalently reduced to problems that are convenient for further study. Using the fundamental solution of the time-fractional wave operator, which contains the generalized hypergeometric Fox function, the solution to the direct problem is written in the form of an integral equation of Volterra type and its properties are studied. Using the results of the direct problem, the solution to the inverse problem is also represented as a nonlinear integral equation. By applying the contraction mapping principle to this equation, the local solvability of the problem is established.
About the Authors
D. DurdievUzbekistan
Durdimurod Kalandarovich Durdiev
46 University str., Tashkent, 100170,
11 M. Ikbol str., Bukhara, 200117
Z. A. Subhoaova
Uzbekistan
Ziyoda Anvar qizi Subhonova
46 University str., Tashkent, 100170,
11 M. Ikbol str., Bukhara, 200117
H. H. Turdiev
Uzbekistan
Halim Hamroyevich Turdiev
46 University str., Tashkent, 100170,
11 M. Ikbol str., Bukhara, 200117
References
1. Kilbas A.A., Srivastava H.M., and Trujillo J.J. Theory and Application of Fractional Differential Equations, North-Holland Math. Stud. 204 (2006).
2. Gorenflo R., Mainardi F. Fractional calculus: integral and differential equations of fractional order, in : A. Carpinteri and F. Mainardi (Eds): Fractals and Fractional Calculus in Continuum Mechanics, 233–276 (Springer Verlag, Wien and New York, 1997).
3. Schneider W.R., Wyss W. Fractional diffusion and wave equations, J. Math. Phys. 30 (1), 134–144 (1989).
4. Orsingher E., Beghin L. Time-fractional telegraph equations and telegraph processes with brownian time, Probab. Theory Relat. Fields. 128 (1), 141–160 (2004).
5. Mainardi F. The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett. 9 (6), 23–28 (1966).
6. Wyss W. The fractional diffusion equation, J. Math. Phys. 27 (11), 2782–2785 (1986).
7. Fujita Y. Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math. 27 (2), 309–321 (1990).
8. Mainardi F., Luchko Y., Pagnini G. The fundamental solution of the space-time fractional diffusion equation, Fract. Calc. Appl. Anal. 4 (2), 153–192 (2001).
9. Ворошилов А.А., Килбас А.А. Задача Коши для диффузионно-волнового уравнения с частной производной Капуто, Дифференц. уравнения 42 (5), 599–609 (2006).
10. Atanackovic T.M., Pilipovic S., Zorica D. A diffusion wave equation with two fractional derivatives of different order, J. Phys. A: Math. Theor. 40 (20), 5319–5333 (2007).
11. Durdiev D.K., Shishkina E., and Sitnik S. The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space, Lobachevskii J. Math. 42 (6), 1264–1273 (2021).
12. Sultanov M., Durdiev D.K., and Rahmonov A. Construction of an explicit solution of a time-fractional multidimensional differential equation, Mathematics 9 (17), 2052 (2021).
13. Shogenov V.K., Kumykova S.K., Shkhanukov-Lafishev M.K. The generalized transport equation and fractional derivatives, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki. (12), 47–54 (1997).
14. Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dynam. (29), 145–155 (2002).
15. Chen J., Liu F., Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl. 338 (2), 1364–1377 (2008).
16. Bazhlekova E. On a nonlocal boundary value problem for the two-term time-fractional diffusion-wave equation, AIP Conf. Proc. 1561 (1), 172–183 (2013).
17. Luchko Y. Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl. 351 (1), 218–223 (2009).
18. Al-Refai M., Luchko Y. Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications, Fract. Calcul. Appl. Anal. 17 (2), 483–498 (2014).
19. Fedorov V.E., Streletskaya E.M. Initial-value problems for linear distributed-order differential equations in Banach spaces, Elect. J. Diff. Equat. (176), 1–17 (2018).
20. Kochubei A.N. Asymptotic properties of solutions of the fractional diffusion-wave equation, Fract. Calc. Appl. Anal. 17 (3), 881–896 (2014).
21. Псху А.В. Фундаментальное решение диффузионно-волнового уравнения дробного порядка, Изв. РАН. Сер. матем. 73 (2), 141–182 (2009).
22. Kemppainen J. Properties of the single layer potential for the time fractional diffusion equation, J. Int. Equat. Appl. 23 (3), 437–455 (2011).
23. Eidelman S.D., Kochubei A.N. Cauchy problem for fractional diffusion equations, J. Diff. Equat. 199 (2), 211–255 (2004).
24. Kochubei A.N. Cauchy problem for fractional diffusion-wave equations with variable coefficients, Appl. Anal. Int. J. 93 (10), 2211–2242 (2014).
25. Durdiev D.K. Inverse coefficient problem for the time-fractional diffusion equation with Hilfer operator, Math. Methods Appl. Sci. 46 (16), 17469–17484 (2023).
26. Durdiev D.K. Inverse coefficient problem for the time-fractional diffusion equation, Eurasian J. Math. Comput. Appl. 9 (1), 44–54 (2021).
27. Durdiev D.K., Bozorov Z.R., Rahmonov A.A. A two-dimensional diffusion coefficient determination problem for the time-fractional equation, Math. Methods Appl. Sci. 44 (13), 10753–10761 (2021).
28. Дурдиев Д.К. Коэффициентная обратная задача для уравнения смешанного параболо-гиперболического типа с нехарактеристической линией изменения типа, Изв. вузов. Матем. (3), 38–49 (2024).
29. Дурдиев У.Д. Задача об определении коэффициента реакции в дробном уравнении диффузии, Дифференц. уравнения 57 (9), 1220–1229 (2021).
30. Турдиев Х.Х. Обратные коэффициентные задачи для временно-дробного волнового уравнения с обобщенной производной Римана–Лиувилля по времени, Изв. вузов. Матем. (10), 46–59 (2023).
31. Сафаров Ж.Ш. Обратная задача для неоднородного интегро-дифференциального уравнения гиперболического типа, Вестн. Санкт-Петербургск. ун-та. Матем. Механ. Астрономия 11 (1), 141–151 (2024).
32. Safarov J.Sh., Durdiev D.K. Inverse problem for an integro-differential wave equation in a cylindrical domain, Lobachevskii J. Math. 43 (11), 3271–3281 (2022).
33. Сафаров Ж.Ш. Обратная задача об определении ядра в интегро-дифференциальном уравнении колебаний ограниченной струны, Матем. заметки СВФУ 29 (4), 21–36 (2022).
34. Дурдиев У.Д. Обратная задача об источнике для уравнения вынужденных колебаний балки, Изв. вузов. Матем. (8), 10–22 (2023).
35. Turdiev Kh.Kh. The problem of determining the memory in two-dimensional system of integro-differential Maxwell’s equations, Bullet. Institute Math. 4 (5), 24–39 (2021).
36. Turdiev Kh.Kh. The inverse problem for systems first order integro- differential equations with memory, Scientific reports of Bukhara State Univ. 5 (81), 54–66 (2020).
37. Дурдиев Д.К., Жумаев Ж.Ж. Обратная задача определения ядра интегро-дифференциального уравнения дробной диффузии в ограниченной области, Изв. вузов. Матем. (10), 22–35 (2023).
38. Дурдиев Д.К., Нуриддинов Ж.З. Единственность задачи определения ядра в интегро-дифференциальном параболическом уравнении с переменными коэффициентами, Изв. вузов. Матем. (11), 3–14 (2023).
39. Durdiev D.K. Convolution kernel determination problem for the time-fractional diffusion equation, Phys. D: Nonlinear Phenomena 457, 133959 (2024).
40. Ladyˇzhenskaja O.A., Solonnikov V.A., Uralprime ceva N.N. Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monog. Amer. Math. Soc. 23 (1968).
41. Mathai A.M., Saxena R.K., Haubold H.J. The H-function: Theory and Application (New York, Springer, 2010).
42. Псху А.В. Фундаментальное решение диффузионно-волнового уравнения дробного порядка, Изв. РАН. Сер. матем. 73 (2), 141–182 (2009).
Review
For citations:
Durdiev D., Subhoaova Z.A., Turdiev H.H. Problem of determining a multidimensional kernel in a diffusion-wave equation with a fractional time derivative. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(7):20-35. (In Russ.) https://doi.org/10.26907/0021-3446-2025-7-20-35