

Multiple interpolation problem for functions with zero spherical mean
https://doi.org/10.26907/0021-3446-2025-5-44-57
Abstract
Let $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, weLet $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, we denote by $V_r(\mathbb{R}^n)$ the set of functions $f\in L_{\mathrm{loc}}(\mathbb{R}^n)$ satisfying the condition \begin{equation*}\label{eq } \int_{|x|\leq r}f(x+y)dx=0\quad\text{for any}\quad y\in\mathbb{R}^n. \end{equation*} The paper investigates the interpolation of tempered growth functions of class $(V_r\cap C^{\infty})(\mathbb{R}^n)$ together with the derivatives of bounded order in a given direction. Let $d\in\mathbb{R}^n$, $\sigma\in\mathbb{R}^n\setminus\{0\}$ be fixed, $\{a_k\}_{k=1}^{\infty}$ be a sequence of points lying on the line $ \{x\in\mathbb{R}^n:\,x=d+t\sigma,\,t\in(-\infty,+\infty)\}$ and satisfying the conditions \begin{equation*}\label{equation} \underset{i\ne j}\inf\, |a_i-a_j|>0,\quad |a_k|\leq|a_{k+1}|\quad\text{for all}\quad k\in\mathbb{N}. \end{equation*} Let also $m\in\mathbb{Z}_+$ and $b_{k,j}\in\mathbb{C}$ ($k\in\mathbb{N}$, $j\in\{0,\ldots,m\}$) be a set of numbers satisfying the condition \begin{equation*}\label{eq} \underset{0\leq j\leq m}\max\, |b_{k,j}|\leq(k+1)^{\alpha} \end{equation*} for all $k\in\mathbb{N}$ and some $\alpha\geq 0$ independent of $k$. It is shown (Theorem) that, under the indicated conditions, the interpolation problem \begin{equation*}\label{ equation*} \left(\sigma_1\frac{\partial}{\partial x_1}+\ldots+\sigma_n\frac{\partial}{\partial x_n}\right)^jf(a_k)=b_{k,j},\quad k\in\mathbb{N},\quad j\in\{0,\ldots,m\}, \end{equation*} is solvable in a class of functions belonging to $(V_r\cap C^{\infty})(\mathbb{R}^n)$, which, together with all their derivatives, have growth no higher than a power-law at infinity. It is noted that the condition of separability of nodes $\{a_k\}_{k=1}^{\infty}$ in the Theorem cannot be removed, and also that the solution of the considered interpolation problem is not the only one. In addition, it is stated that the one-dimensional analogue of the Theorem is not valid since every continuous function of class $V_r(\mathbb{R}^n)$ at $n=1$ is $2r$-periodic.
About the Authors
V. V. VolchkovRussian Federation
Valeriy V. Volchkov.
24 Universitetskaya str., Donetsk, 283001
Vit. V. Volchkov
Russian Federation
Vitaliy V. Volchkov.
24 Universitetskaya str., Donetsk, 283001
References
1. Гольдберг А.А., Левин Б.Я., Островский И.В. Целые и мероморфные функции, Итоги науки и техн. Сер. Совр. пробл. матем. Фундамент. напр. 85, 5–185 (1991).
2. Volchkov V.V., Volchkov Vit.V. Interpolation problems for functions with zero ball means, Probl. Anal. Issues Anal. 10 (28) (3), 129–140 (2021).
3. Volchkov V.V., Volchkov Vit.V. Interpolation problem with knots on a line for solutions of a multidimensional convolution equation, Lobachevskii J. Math. 44 (8), 3630–3639 (2023).
4. Zalcman L. A bibliographic survey of the Pompeiu problem, Approx. Solut. Partial Diff. Equat., 185–194 (Kluwer Acad. Publ., Dordrecht, 1992).
5. Chakalov L. Sur un problème de D. Pompéiu, Annuaire [Godišnik] Univ. Sofia Fac. Phys.-Math., Livre 1, 40, 1–14 (1944).
6. Беренстейн К.А., Струппа Д. Комплексный анализ и уравнения в свертках, Итоги науки и техн. Сер. Совр. пробл. матем. Фундамент. напр. 54, 5–111 (1989).
7. Bagchi S.C., Sitaram A. The Pompeiu problem revisited, Enseign. Math. 36 (1–2), 67–91 (1990).
8. Volchkov V.V. Integral Geometry and Convolution Equations (Kluwer Acad. Publ., Dordrech, 2003).
9. Volchkov V.V., Volchkov Vit.V. Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group (Springer-Verlag, London, 2009).
10. Volchkov V.V., Volchkov Vit.V. Offbeat Integral Geometry on Symmetric Spaces (Birkhäuser, Basel, 2013).
11. Волчков В.В., Волчков Вит.В. Аппроксимация функций на лучах в Rn решениями уравнений свертки, Сиб. матем. журн. 64 (1), 56–64 (2023).
12. Коренев Б.Г. Введение в теорию бесселевых функций (Наука, М., 1971).
13. Хёрмандер Л. Анализ линейных дифференциальных операторов с частными производными, Т. 1 (Мир, М., 1986).
Review
For citations:
Volchkov V.V., Volchkov V.V. Multiple interpolation problem for functions with zero spherical mean. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(5):44-57. (In Russ.) https://doi.org/10.26907/0021-3446-2025-5-44-57