

On finding the coefficients of the optimal interpolation formula in the space of S.L. Sobolev Ŵ(m) (T1)
https://doi.org/10.26907/0021-3446-2025-4-80-89
Abstract
A typical approximation problem is the interpolation problem. The classical method for solving it is to construct an interpolation polynomial. However, polynomials have a number of disadvantages, such as being a tool for approximating functions with singularities and functions with not very high smoothness. In practice, in order to approximate functions well, instead of constructing a high-degree interpolation polynomial, splines are used, which are very convenient to use.
This paper examines the construction of interpolation splines using the Sobolev method, minimizing the norm in a certain Hilbert space.
For the first time, S.L. Sobolev \cite{6} posed the problem of finding the extremal function for the interpolation formula and calculating the norm of the error functional in the Sobolev space.
In this work, the extremal function of the interpolation formula is found in explicit form in the Sobolev space $W_{2}^{\left( m \right)}\left( {{R}^{n}} \right)$; a function whose generalized derivatives of order $m$ are square integrable. Basically, the problem of constructing optimal interpolation formulas in the space of S.L. Sobolev $\tilde{W}_{2}^{\left( m \right)}\left( {{T}_{1}} \right )$ for $m=4$ is considered.
About the Authors
Kh. U. KhayatovUzbekistan
Khurshidjon Usmanovich Khayatov
11 M. Ikbol str., Bukhara, 200118
O. I. Jalolov
Russian Federation
Ozodjon Isomidinovich Jalolov
11 M. Ikbol str., Bukhara, 200118
References
1. Holladay J.C. Smoothest curve approximation, Math. Tables Aids Comput. 11, 223–243 (1957).
2. de Boor C. Best approximation properties of spline functions of odd degree, J. Math. Mech. 12, 747–749 (1963).
3. Ahlberg J.H., Nilson E.N., Walsh J.L. The Theory of Splines and Their Applications (Academic Press, New York, 1967).
4. Arcangeli R., de Silanes M. C.L., and Torrens J.J. Multidimensional Minimizing Splines (Springer, Boston, 2004).
5. Berlinet A., Thomas-Agnan C. Reproducing Kernel Hilbert Spaces in Probability and Statistics (Springer, Boston, 2004).
6. Игнатов М.И., Певный А.Б. Натуральные сплайны многих переменных (Наука, Л., 1991).
7. Корнейчук Н.П., Бабенко В.Ф., Лигун А.А. Экстремальные свойства полиномов и сплайнов (Наукова Думка, Киев, 1992).
8. Лоран П.Ж. Аппроксимация и оптимизация (Мир, М., 1975).
9. Стечкин С.Б., Субботин Ю.Н. Сплайны в вычислительной математике (Наука, М., 1976).
10. Шадиметов Х.М., Маматова Н.Х. Составные кубатурные формулы на решетке, Изв. вузов. Матем. (11), 59–74 (2023).
11. Шадиметов Х.М., Маматова Н.Х. О задаче оптимального интерполирования функций, Изв. вузов. Матем. (12), 59–70 (2023).
12. Соболев С.Л. Введение в теорию кубатурных формул (Наука, М., 1974).
13. Шадиметов Х.М., Маматова Н.Х. Об одной интерполяционной задаче в пространстве Cоболева, Узбекск. матем. журн. (3), 180–186 (2009).
14. Жалолов Ик.И. Алгоритм построения дискретного аналога D3 [beta ] одного оператора, Пробл. вычисл. и прикл. матем. 2, 48–52 (2015).
15. Жалолов О.И., Хаятов Х.У. Алгоритм построения оптимальной интерполяционной формулы в пространстве С.Л.Соболева W~ (m) (T1), Пробл. вычисл. и прикл. матем. (1), 47–59 (2023).
Review
For citations:
Khayatov Kh.U., Jalolov O.I. On finding the coefficients of the optimal interpolation formula in the space of S.L. Sobolev Ŵ(m) (T1). Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(4):80-89. (In Russ.) https://doi.org/10.26907/0021-3446-2025-4-80-89