

Explicit formulas for two limit cycles of a family of planar differential systems
https://doi.org/10.26907/0021-3446-2025-4-71-79
Abstract
In this work, we study a family of multi-parameter polynomial differential systems of degree eleven. We prove that the considered family has an invariant algebraic curve, which is given explicitly. Subsequently, we demonstrate the integrability of these systems and derive an explicit expression for a first integral. Moreover, we provide sufficient conditions for the systems to possess two explicitly given limit cycles. The applicability of our results is illustrated by a concrete example.
About the Authors
S. E. HamiziAlgeria
Saad Eddine Hamizi
Batna, 05078
R. Boukoucha
Algeria
Rachid Boukoucha
Bejaia, 06000
References
1. Dumortier F., Llibre J., Art´es J.C. Qualitative Theory of Planar Differential Systems (Universitex ) (SpringerVerlag, Berlin, 2006).
2. Perko L. Differential Equations and Dynamical Systems, 3rd ed., Texts in Appl. Math. 7 (Springer-Verlag, New York, 2001).
3. Llibre J., Zhang X. A survey on algebraic and explicit non-algebraic limit cycles in planar differential systems, Expo. Math. 39 (1), 48–61 (2021), DOI: 10.1016/j.exmath.2020.03.001.
4. Bendjeddou A., Cheurfa R. On the exact limit cycle for some class of planar differential systems, Nonlinear Diff. Equat. Appl. 14 (5), 491–498 (2007).
5. Llibre J., Zhao Y. Algebraic limit cycles in polynomial systems of differential equations, J. Phys. A: Math. Theor. 40 (47), 14207–14222 (2007).
6. Boukoucha R., Bendjeddou A. On the dynamics of a class of rational Kolmogorov systems, J. Nonlinear Math. Phys. 23 (1), 21–27 (2016).
7. Schlomiuk D. Algebraic particular integrals, integrability and the problem of center, Trans. Amer. Math. Soc. 338 (2), 799–841 (1993).
8. Hilbert D. Mathematical Problems, Lecture, Second Internat. Congr. Math (Paris, 1900), Nachr. Ges. Wiss. Go¨ttingen Math. Phys. Kl, 253–297 (1900).
9. Christopher C., Llibre J., Pantazi C., Zhang X. Darboux integrability and invariant algebraic curves for planar polynomial systems, J. Phys. A: Math. Gen. 35 (10), 2457–2476 (2002).
10. Bendjeddou A., Cheurfa R. Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems, Elect. J. Diff. Equat. 2017 (71), 1–7 (2017).
11. Benterki R., Llibre J. Polynomial differential systems with explicit non-algebraic limit cycles, Elect. J. Diff. Equat. 2012 (78), 1–6 (2012).
12. Boukoucha R. Explicit limit cycles of a family of polynomial differential systems, Elect. J. Diff. Equat. 2017 (217), 1–7 (2017).
13. Cheresiz V., Volokitin E. The algebraic curves of planar polynomial differential systems with homogeneous nonlinearities, Elect. J. Qual. Theory Differ. Equat. (51), 1–12 (2021), DOI: 10.14232/ejqtde.2021.1.51.
14. Gasull A., Giacomini H., Torregrosa J. Explicit non-algebraic limit cycles for polynomial systems, J. Comput. Appl. Math. 200 (1), 448–457 (2007).
15. Gin´e J., Grau M. Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations, Nonlinearity 19 (8), 1939–1950 (2006).
16. Odani K. The Limit Cycle of the van der Pol Equation Is Not Algebraic, J. Diff. Equat. 115 (1), 146–152 (1995).
17. Chavarriga J., Llibre J. Invariant Algebraic Curves and Rational First Integrals for Planar Polynomial Vector Fields, J. Diff. Equat. 169 (1), 1–16 (2001).
Review
For citations:
Hamizi S.E., Boukoucha R. Explicit formulas for two limit cycles of a family of planar differential systems. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(4):71-79. (In Russ.) https://doi.org/10.26907/0021-3446-2025-4-71-79