Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Explicit formulas for two limit cycles of a family of planar differential systems

https://doi.org/10.26907/0021-3446-2025-4-71-79

Abstract

In this work, we study a family of multi-parameter polynomial differential systems of degree eleven. We prove that the considered family has an invariant algebraic curve, which is given explicitly. Subsequently, we demonstrate the integrability of these systems and derive an explicit expression for a first integral. Moreover, we provide sufficient conditions for the systems to possess two explicitly given limit cycles. The applicability of our results is illustrated by a concrete example.

About the Authors

S. E. Hamizi
Higher National School of Renewable Energies, Environment and Sustainable Development
Algeria

Saad Eddine Hamizi

Batna, 05078



R. Boukoucha
University of Bejaia
Algeria

Rachid Boukoucha

Bejaia, 06000



References

1. Dumortier F., Llibre J., Art´es J.C. Qualitative Theory of Planar Differential Systems (Universitex ) (SpringerVerlag, Berlin, 2006).

2. Perko L. Differential Equations and Dynamical Systems, 3rd ed., Texts in Appl. Math. 7 (Springer-Verlag, New York, 2001).

3. Llibre J., Zhang X. A survey on algebraic and explicit non-algebraic limit cycles in planar differential systems, Expo. Math. 39 (1), 48–61 (2021), DOI: 10.1016/j.exmath.2020.03.001.

4. Bendjeddou A., Cheurfa R. On the exact limit cycle for some class of planar differential systems, Nonlinear Diff. Equat. Appl. 14 (5), 491–498 (2007).

5. Llibre J., Zhao Y. Algebraic limit cycles in polynomial systems of differential equations, J. Phys. A: Math. Theor. 40 (47), 14207–14222 (2007).

6. Boukoucha R., Bendjeddou A. On the dynamics of a class of rational Kolmogorov systems, J. Nonlinear Math. Phys. 23 (1), 21–27 (2016).

7. Schlomiuk D. Algebraic particular integrals, integrability and the problem of center, Trans. Amer. Math. Soc. 338 (2), 799–841 (1993).

8. Hilbert D. Mathematical Problems, Lecture, Second Internat. Congr. Math (Paris, 1900), Nachr. Ges. Wiss. Go¨ttingen Math. Phys. Kl, 253–297 (1900).

9. Christopher C., Llibre J., Pantazi C., Zhang X. Darboux integrability and invariant algebraic curves for planar polynomial systems, J. Phys. A: Math. Gen. 35 (10), 2457–2476 (2002).

10. Bendjeddou A., Cheurfa R. Coexistence of algebraic and non-algebraic limit cycles for quintic polynomial differential systems, Elect. J. Diff. Equat. 2017 (71), 1–7 (2017).

11. Benterki R., Llibre J. Polynomial differential systems with explicit non-algebraic limit cycles, Elect. J. Diff. Equat. 2012 (78), 1–6 (2012).

12. Boukoucha R. Explicit limit cycles of a family of polynomial differential systems, Elect. J. Diff. Equat. 2017 (217), 1–7 (2017).

13. Cheresiz V., Volokitin E. The algebraic curves of planar polynomial differential systems with homogeneous nonlinearities, Elect. J. Qual. Theory Differ. Equat. (51), 1–12 (2021), DOI: 10.14232/ejqtde.2021.1.51.

14. Gasull A., Giacomini H., Torregrosa J. Explicit non-algebraic limit cycles for polynomial systems, J. Comput. Appl. Math. 200 (1), 448–457 (2007).

15. Gin´e J., Grau M. Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations, Nonlinearity 19 (8), 1939–1950 (2006).

16. Odani K. The Limit Cycle of the van der Pol Equation Is Not Algebraic, J. Diff. Equat. 115 (1), 146–152 (1995).

17. Chavarriga J., Llibre J. Invariant Algebraic Curves and Rational First Integrals for Planar Polynomial Vector Fields, J. Diff. Equat. 169 (1), 1–16 (2001).


Review

For citations:


Hamizi S.E., Boukoucha R. Explicit formulas for two limit cycles of a family of planar differential systems. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(4):71-79. (In Russ.) https://doi.org/10.26907/0021-3446-2025-4-71-79

Views: 99


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)