

Natural small oscillations of a flat viscoelastic spiral spring
https://doi.org/10.26907/0021-3446-2025-4-53-59
Abstract
Curved pipe systems are widely used in mechanical engineering, the nuclear industry, offshore oil production, and aerospace engineering. The purpose of the work is to study small vibrations of a viscoelastic helical spring. Small vibrations of a thin curved rod, the elastic line of which is a flat curve and one of the main directions of the cross-section of which lies in the plane of the curve, break down into two types: vibrations with displacements in the plane of the curve and with displacements perpendicular to the plane of the curve. The viscoelastic properties of materials are taken into account using complex elastic moduli. Asymptotic expansions are constructed for the eigenfunctions and eigenfrequencies corresponding to both types of oscillations of a repeatedly twisted flat spiral spring with fixed ends. A technique has been developed for obtaining resolving equations corresponding to the boundary conditions.
About the Authors
I. I. SafarovUzbekistan
Ismail Ibrahimovich Safarov
32 A. Navoi str., Tashkent, 100011
M. Kh. Teshaev
Uzbekistan
Mukhsin Khudoyberdievich Teshaev
11 M. Ikbol str., Bukhara, 200118
Sh. I. Juraev
Uzbekistan
Shukhrat Israilovich Juraev
11 M. Ikbol str., Bukhara, 200118
F. F. Khomidov
Uzbekistan
Farhod Faxriddinovich Khomidov
15 Murtazaeva str., Bukhara, 200100
References
1. Pa¨ıdoussis M.P. The canonical problem of the fluid-conveying pipe and radiation of the knowledge gained to other dynamics problems across Applied Mechanics, J. Sound Vib. 310 (3), 462–492 (2008).
2. Safarov I., Teshaev M., Yarashev J.A. Vibrations of multilayer composite viscoelastic curved pipe under internal pressure, IOP Conf. Ser.: Mater. Sci. Engineering 1030 (1), 012073 (2021).
3. Tang S., Sweetman B. A geometrically-exact momentum-based nonlinear theory for pipes conveying fluid, J. Fluid Struct. 100, 103190 (2021).
4. Wang Y., Wang L., Ni Q., Yang M., Liu D., Qin T. Non-smooth dynamics of articulated pipe conveying fluid subjected to a one-sided rigid stop, Appl. Math Model. 89 (1), 802–818 (2021).
5. Safarov I., Teshaev M., Axmedov S., Rayimov D., Homidov F. Manometric Tubular Springs Oscillatory Processes Modeling with Consideration of its Viscoelastic Properties, E3S Web Conf. 264, 01010 (2021).
6. Abdollahi R., Dehghani Firouz-abadi R., Rahmanian M. On the stability of rotating pipes conveying fluid in annular liquid medium, J. Sound Vib. 494, 115891 (2021).
7. Mirzaev I.M. Interaction between the bit and the rock, Soviet Mining Science 11 (1), 70–73 (1975).
8. Yamashita K., Nishiyama N., Katsura K., Yabuno H. Hopf-Hopf interactions in a spring supported pipe conveying fluid, Mech. Syst. Signal Pr. 152, 107390 (2021).
9. Yan D., Guo S., Li Y., Song J., Li M., Chen W. Dynamic characteristics and responses of flow-conveying flexible pipe under consideration of axially-varying tension, Ocean Eng. 223, 108631 (2021).
10. Tеshаеv M., Sаfаrоv I., Bоltаyеv Z., Sobirova R., Ruziev T. Propagation of natural waves in extended viscoelastic plates of variable thickness, AIP Conf. Proc. 2647, 030002 (2022).
11. Lu Z.-Q., Zhang K.-K., Ding H., Chen L.-Q. Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials, Nonlinear Dyn. 100 (2), 1091–1104 (2020).
12. Soares R.M., Moreira C.L.R. and Silva F.M.A. Nonlinear Oscillations of a Transversally Excited Non-shallow Conoidal Shell via Finite Element Analysis, J. Vib. Eng. Technol. 10, 2073-2095 (2022).
13. Safarov I., Teshaev M., Marasulov A., Jurayev T., Raxmonov B. Vibrations of Cylindrical Shell Structures Filled with Layered Viscoelastic Material, E3S Web Conf. 264, 01027 (2021).
14. Khudainazarov Sh., Mavlanov T., Umarova F., Sabirjanov T. The natural vibrations of shell structures taking into account dissipative properties and structural heterogeneity, E3S Web Conf. 402, 07023 (2023).
15. Holmes P. Pipes Supported at Both Ends Cannot Flutter, J. Appl. Mech. 45 (3), 619–622 (1978).
16. Safarov I.I., Tеshaev M.Kh., Rahmonov B.S., Axmedov M.Sh., Rayimov D.G. Seismic vibrations of spherical bodies in a viscoelastic deformable medium, P. 1. AIP Conf. Proc. 2432, 030124 (2022).
17. Modarres-Sadeghi Y., Pa¨ıdoussis M.P. Nonlinear dynamics of extensible fluid-conveying pipes, supported at both ends, J. Fluid Struct. 25 (3), 535–543 (2009).
18. Chen W., Hu Z., Dai H., Wang L. Extremely large-amplitude oscillation of soft pipes conveying fluid under gravity, Appl. Math. Mech. 41 (9), 1381–1400 (2020).
19. Дурдиев Д.К., Жумаев Ж.Ж. Обратная задача определения ядра интегро-дифференциального уравнения дробной диффузии в ограниченной области, Изв. вузов. Матем. (10), 22–35 (2023).
20. Semler C., Li G.X., Pa¨ıdoussis M.P. The Non-Linear Equations of Motion of Pipes Conveying Fluid, J. Sound Vib. 169 (5), 577–599 (1994).
21. Stangl M., Gerstmayr J., Irschik H. A Large Deformation Planar Finite Element for Pipes Conveying Fluid Based on the Absolute Nodal Coordinate Formulation, J. Comput. Nonlinear Dyn. 4 (3), 031009 (2009).
22. Chen W., Dai H., Jia Q., Wang L. Geometrically exact equation of motion for large amplitude oscillation of cantilevered pipe conveying fluid, Nonlinear Dyn. 98 (3), 2097–2114 (2019).
23. Cai F., Zang F., Ye X., Huang Q. Analysis of nonlinear dynamic behavior of pipe conveying fluid based on absolute nodal coordinate formulation, J. Vib. Shock. 30 (6), 143–146 (2011).
24. Дурдиев У.Д. Обратная задача об источнике для уравнения вынужденных колебаний балки, Изв. вузов. Матем. (8), 10–22 (2023).
25. Турдиев Х.Х. Обратные коэффициентные задачи для временно-дробного волнового уравнения с обобщенной производной Римана–Лиувилля по времени, Изв. вузов. Матем. (10), 46–59 (2023).
26. Тешаев М.Х. Об осуществлении сервосвязей электромеханической следящей системой, Изв. вузов. Матем. (12), 44–51 (2010).
27. Тешаев М.Х., Каримов И.М., Умаров А.О., Жураев Ш.И. Дифракция гармонических сдвиговых волн на эллиптической полости, находящейся в упругой среде, Изв. вузов. Матем. (8), 64–70 (2023).
Review
For citations:
Safarov I.I., Teshaev M.Kh., Juraev Sh.I., Khomidov F.F. Natural small oscillations of a flat viscoelastic spiral spring. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(4):53-59. (In Russ.) https://doi.org/10.26907/0021-3446-2025-4-53-59