Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Transient processes during unstationary flow of an elastic-viscous liquid in a flat channel

https://doi.org/10.26907/0021-3446-2025-3-30-44

Abstract

The paper considers the solution to the problem of unsteady flow of an elastic-viscous fluid in a flat channel under the influence of a constant pressure gradient based on the generalized Maxwell model. By solving the problem, formulas for velocity distribution, fluid flow and other hydrodynamic quantities are determined. Based on the formulas found, transient processes during unsteady flow of an elastic-viscous fluid in a flat channel are analyzed. Based on the results of the analysis, it is shown that transient processes under the influence of the Deborah number, which determine the elasticity properties of a fluid in an elastic-viscous flow, are fundamentally different from the transient process in a Newtonian fluid. At the same time, it is discovered that the processes of transition of the characteristics of an elastic-viscous fluid from an unsteady state to a stationary state at small values of Deborah numbers practically do not differ from the processes of transition of a Newtonian fluid. When the Deborah number exceeds relatively unity, it has been established that the process of transition of an elastic-viscous fluid from an unsteady state to a stationary state is a wave-type change, in contrast to the transition process of a Newtonian fluid, and the transition time is several times longer than the transition time of a Newtonian fluid. It is also discovered that disturbances may occur during the transient process. This disturbance, occurring in the unsteady flow of an elastic-viscous fluid, will be stabilized by mixing a Newtonian fluid into it. That is, the instantaneous maximum increase in the velocity of the viscoelastic fluid as a result of an increase in the concentration of the Newtonian fluid is normalized. The implementation of this property is important in technical and technological processes, in preventing technical failures or malfunctions.

About the Authors

K. Navruzov
Urgench State University
Uzbekistan

Kuralbay Navruzov 

14 Hamid Olimjon str., Urgench, 220100 



N. I. Abdikarimov
Urgench State University
Uzbekistan

Nabijon Ibadullayevich Abdikarimov 

14 Hamid Olimjon str., Urgench, 220100 



J. Jumayev
Bukhara State University
Uzbekistan

Jura Jumaev

11 M. Ikbol str., Bukhara, 200018 



References

1. Лойцянский Л.Г. Механика жидкости и газа (Дрофа, М., 2003).

2. Файзуллаев Д.Ф., Наврузов К. Гидродинамика пульсирующих потоков (Ташкент, Фан, 1986).

3. Колесниченко В.И., Шарифулин А.Н. Введение в механику несжимаемой жидкости (Изд. ПНИПУ, Пермь, 2019).

4. Слезкин Н.А. Динамика вязкой несжимаемой жидкости (Гостехиздат, M., 1956).

5. Тарг С.М. Основные задачи теории ламинарных течений (Гостехиздат, M., 1951).

6. Шлихтинг Г. Теория пограничного слоя (Наука, М., 1974).

7. Громека И.С. К теории движения жидкости в узких цилиндрических трубках, Собр. сочин., 149–171 (Унив. тип., Казань, 1882).

8. Громека И.С. О скорости распространения волнообразного движения жидкости в упругих трубах, Собр. сочин., 172–183 (Унив. тип., Казань, 1952).

9. Наврузов К., Хакбердиев Ж.Б. Динамика неньютоновских жидкостей (Фан, Ташкент, 2000).

10. Hassan A. Abu-EL, EL-Maghawry Unsteady axial viscoelastic pipe flows of an Oldroyd B fluid, Rheology-New Concepts, Appl. Methods, Ed. by R. Durairaj 6, 91–106 (2013).

11. Navruzov K., Sharipova Sh. B. Tangential Shear Stress in Oscillatory Flow of a Viscoelastic incompressible fluid in a plane Channel, Fluid Dynam. 58 (3), 360–370 (2023).

12. Navruzov K., Fayziev R.A., Mirzoev А.А., Sharipova Sh.B. Tangential Shear Stress in Oscillatory Flow of a Viscoelastic Fluid in a Flat Channel, Lect. Notes Comput. Sci. 13772, 1–14 (2023).

13. Шульман З.П., Хусид Б.М. Нестационарные процессы конвективного переноса в наследственных средах. Под ред. Р.И. Нигматулина (Наука и техн., Минск, 1983).

14. Шульман З.П., Хусид Б.М. Фенологические и микроструктурные теории наследственных жидкостей, Препринт АН БССР, Ин-т тепло- и массообмена им. А.В. Лыкова (4) (Минск, 1983).

15. Casanellas L., Ortin J. Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: Theoretical analysis, J. Non-Newtonian Fluid. Mech. 166 (23–24), 1315–1326 (2011).

16. Ding Z., Jian Y. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis, J. Fluid. Mech. 919, 1–31 (2021).

17. Кузьмин М.Ю. О математической модели движения нелинейно-вязкой жидкости с условием проскальзывания на границе, Изв. вузов. Матем. (5), 53–62 (2007).

18. Наврузов К., Бегжанов А.Ш., Шарипова Ш.Б., Жумаев Ж. Математическое моделирование гидродинамического сопротивления в колебательном потоке вязкоупругой жидкости, Изв. вузов. Матем. (8), 45–55 (2023).

19. Астарита Дж., Марруччи Дж. Основы гидромеханики неньютоновских жидкостей (Мир, М., 1978).


Review

For citations:


Navruzov K., Abdikarimov N.I., Jumayev J. Transient processes during unstationary flow of an elastic-viscous liquid in a flat channel. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(3):30-44. (In Russ.) https://doi.org/10.26907/0021-3446-2025-3-30-44

Views: 180


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)