

Spectral and functional inequalities for antisymmetric functions
https://doi.org/10.26907/0021-3446-2025-2-104-109
Abstract
A number of spectral and functional inequalities related to Schrödinger operators defined on antisymmetric functions is presented. Among them are Hardy and Sobolev inequalities, Lieb-Thirring and CLR inequalities.
About the Authors
A. A. LaptevUnited Kingdom
Ari A. Laptev.
180 Queen’s Gate, London SW7 2AZ; 1 Olympic Ave., Sochi, 354340
I. A. Shcherbakov
Russian Federation
Ilia A. Shcherbakov.
1 Olympic Ave., Sochi, 354340
References
1. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Stremnitzer H. Local properties of Coulombic wavefunctions, Commun. Math. Phys. 163 (1), 185–215 (1994).
2. Frank R.L., Laptev A., Read L. Weighted CLR type bounds in two dimensions, Trans. Amer. Math. Soc. 377 (5), 3357–3371 (2024).
3. Hoffmann-Ostenhof T., Laptev A. Hardy Inequality for Antisymmetric Functions, Functional Anal. Its Appl. 55 (2), 122–129 (2021).
4. Hoffmann-Ostenhof T., Laptev A., Shcherbakov I. Hardy and Sobolev inequalities on antisymmetric functions, Bull. Math. Sci. 14 (1), 2350010 (2024), DOI: 10.1142/S1664360723500108.
5. Shcherbakov I.A. Spectrum of the Laplace–Beltrami Operator on Antisymmetric Functions, Springer, J. Math. Sci. 279 (4), 563–572 (2024).
6. Lieb E.H., Thirring W.E. Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, in : Studies in Mathematical Physics, 269–303 (1976) in Russian..
7. Cwikel M. Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1), 93–100 (1997).
8. Lieb E.H. Bounds on the eigenvalues of the Laplace and Schroedinger operators, Bull. Amer. Math. Soc. 82 (3), 751–753 (1976).
9. Розенблюм Г.В. Распределение дискретного спектра сингулярных дифференциальных операторов, ДАН СССР 202 (5), 1012–1015 (1972).
10. Frank R.L., Laptev A., Weidl T. Schrödinger Operators: Eigenvalues and Lieb-Thirring inequalities (Cambridge Univ. Press, Cambridge, 2022).
Review
For citations:
Laptev A.A., Shcherbakov I.A. Spectral and functional inequalities for antisymmetric functions. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):104-109. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-104-109