Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectral and functional inequalities for antisymmetric functions

https://doi.org/10.26907/0021-3446-2025-2-104-109

Abstract

A number of spectral and functional inequalities related to Schrödinger operators defined on antisymmetric functions is presented. Among them are Hardy and Sobolev inequalities, Lieb-Thirring and CLR inequalities.

About the Authors

A. A. Laptev
Imperial College London; Sirius Mathematics Center, Sirius University of Science and Technology
United Kingdom

Ari A. Laptev.

180 Queen’s Gate, London SW7 2AZ; 1 Olympic Ave., Sochi, 354340



I. A. Shcherbakov
Sirius Mathematics Center, Sirius University of Science and Technology
Russian Federation

Ilia A. Shcherbakov.

1 Olympic Ave., Sochi, 354340



References

1. Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Stremnitzer H. Local properties of Coulombic wavefunctions, Commun. Math. Phys. 163 (1), 185–215 (1994).

2. Frank R.L., Laptev A., Read L. Weighted CLR type bounds in two dimensions, Trans. Amer. Math. Soc. 377 (5), 3357–3371 (2024).

3. Hoffmann-Ostenhof T., Laptev A. Hardy Inequality for Antisymmetric Functions, Functional Anal. Its Appl. 55 (2), 122–129 (2021).

4. Hoffmann-Ostenhof T., Laptev A., Shcherbakov I. Hardy and Sobolev inequalities on antisymmetric functions, Bull. Math. Sci. 14 (1), 2350010 (2024), DOI: 10.1142/S1664360723500108.

5. Shcherbakov I.A. Spectrum of the Laplace–Beltrami Operator on Antisymmetric Functions, Springer, J. Math. Sci. 279 (4), 563–572 (2024).

6. Lieb E.H., Thirring W.E. Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, in : Studies in Mathematical Physics, 269–303 (1976) in Russian..

7. Cwikel M. Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. 106 (1), 93–100 (1997).

8. Lieb E.H. Bounds on the eigenvalues of the Laplace and Schroedinger operators, Bull. Amer. Math. Soc. 82 (3), 751–753 (1976).

9. Розенблюм Г.В. Распределение дискретного спектра сингулярных дифференциальных операторов, ДАН СССР 202 (5), 1012–1015 (1972).

10. Frank R.L., Laptev A., Weidl T. Schrödinger Operators: Eigenvalues and Lieb-Thirring inequalities (Cambridge Univ. Press, Cambridge, 2022).


Review

For citations:


Laptev A.A., Shcherbakov I.A. Spectral and functional inequalities for antisymmetric functions. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):104-109. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-104-109

Views: 101


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)