

Free boundary problem for a system of parabolic equations of the reaction-diffusion type
https://doi.org/10.26907/0021-3446-2025-2-79-90
Abstract
This paper considers a free boundary problem for a system of quasi-linear parabolic equations in one dimension. Nonlinear problems with a free boundary are studied using a method based on constructing a priori estimates. For the solutions of the problem, apriory estimates of Shauder type are established. On the base of apriory estimates, the existence and uniqueness theorems are proved.
About the Author
M. S. RasulovUzbekistan
Mirojiddin S. Rasulov.
9 University str., Tashkent, 100174; 39 Kori Niyozov str., Tashkent, 100000
References
1. Du Y., Lin Zh.G. Spreading-Vanishing Dichotomy in the Diffusive Logistic Model with a Free Boundary, SIAM J. Math. Anal. 42 (1), 377–405 (2010), DOI: 10.1137/090771089.
2. Du Y., Lin Zh.G. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor, Discrete Contin. Dyn. Syst. Ser. B. 19 (10), 3105–3132 (2014), DOI: 10.3934/dcdsb.2014.19.3105.
3. Guo J.-S., Wu C.-H., On a Free Boundary Problem for a Two-Species Weak Competition System, J. Dyn. Diff. Equat. 24, 873–895 (2012), DOI: 10.1007/s10884-012-9267-0.
4. Wang M., Zhao J. Free Boundary Problems for a Lotka-Volterra Competition System, J. Dyn. Diff. Equat. 26, 655–672 (2014), DOI: 10.1007/s10884-014-9363-4.
5. Liu Y., Guo Z., Smaily El M., Wang L. Biological invasion in a predator–prey model with a free boundary, Bound Value Probl. 2019 (33) (2019), DOI: 10.1186/s13661-019-1147-7.
6. Liu Y., Guo Z., Smaily El M., Wang L. A Leslie-Gower predator-prey model with a free boundary, Discrete Contin. Dyn. Syst. Ser. S 12 (7), 2063–2084 (2019), DOI: 10.3934/dcdss.2019133.
7. Lin Z.G. A free boundary problem for a predator-prey model, Nonlinearity 20 (8), 1883–1892 (2007), DOI: 10.1088/0951-7715/20/8/004.
8. Yousefnezhad M., Mohammadi S.A., Bozorgnia F. A Free Boundary Problem for a Predator-Prey Model with Nonlinear Prey-Taxis, Appl. Math. 63, 125–147 (2018), DOI: 10.21136/AM.2018.0227-17.
9. Chen X., Friedman A. A Free Boundary Problem Arising in a Model of Wound Healing, SIAM J.Math.Anal. 32 (4), 788–800 (2000), DOI: 10.1137/S0036141099351693.
10. Юнес Г.А., Эль Хатиб Н., Вольперт В.А. Существование решения задачи со свободной границей для систем «реакция-диффузия», Современ. матем. Фундамент. направ. 68 (4), 716–731 (2022), DOI: 10.22363/2413-3639-2022-68-4-716-731.
11. Cantrell R.S., Cosner C. Spatial Ecology via Reaction-Diffusion Equations (Wiley, England, 2003).
12. Pao C.V. Nonlinear Parabolic and Elliptic Equations (Plenum Press, New York, 1992).
13. Тасевич А.Л., Бочаров Г.А., Вольперт В.А. Уравнения реакции-диффузии в иммунологии, Ж. вычисл. матем. и матем. физ. 58 (12), 2048–2059 (2018), DOI: 10.31857/S004446690003551-7.
14. Мейрманов А.М. Задача Стефана (Наука, Новосибирск, 1986).
15. Takhirov J.O. A Free Boundary Problem for a Reaction-Diffusion Equation in Biology, Indian J. Pure Appl. Math. 50, 95–112 (2019), DOI: 10.1007/s13226-019-0309-8.
16. Takhirov Z.O., Rasulov M.S. Problem with free boundary for systems of equations of reaction-diffusion type, Ukr. Math. J. 69 (12), 1968–1980 (2018), DOI: 10.1007/s11253-018-1481-4.
17. Wang R.H., Wang L., Wang Zh. Free boundary problem of a reaction-diffusion equation with nonlinear convection term, J. Math. Anal. Appl. 467 (2), 1233–1257 (2018), DOI: 10.1016/j.jmaa.2018.07.065.
18. Кружков С.Н. Нелинейные параболические уравнения с двумя независимыми переменными, Тр. ММО 16 (1), 329–346 (1967).
19. Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа (Наука, М., 1967).
20. Фридман А. Уравнения с частными производными параболического типа (Мир, М., 1968).
21. Elmurodov A.N., Rasulov M.S. On a Uniqueness of Solution for a Reaction-Diffusion Type System with a Free Boundary, Lobachevskii J. Math. 43 (8), 2099–2106 (2022), DOI: 10.1134/S1995080222110087.
Review
For citations:
Rasulov M.S. Free boundary problem for a system of parabolic equations of the reaction-diffusion type. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):79-90. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-79-90