

The octonionic Moritoh transform on octonionic function spaces
https://doi.org/10.26907/0021-3446-2025-2-61-73
Abstract
This article explores the challenges and applications of the octonion Fourier transform, with a focus on wavelet analysis. We extend the Moritoh wavelet transform to the octonionic Besov spaces, the weighted octonionic Besov spaces, the octonionic BMO spaces, and the octonionic weighted BMO spaces. The derived bounds for the octonionic Moritoh wavelet transform in these spaces contribute to a deeper understanding of its behaviour. Our findings pave the way for future research in signal processing, image analysis, and the intersection of octonion wavelet analysis with other mathematical theories.
About the Authors
A. KumarIndia
Awniya Kumar.
Lucknow, 226025; Motihari, Bihar, 845401
S. K. Singh
India
Sunil Kumar Singh.
Lucknow, 226025
Sh. K. Singh
India
Sheo Kumar Singh.
Motihari, Bihar, 845401
References
1. Lian P. The octonionic Fourier transform: Uncertainty relations and convolution, Signal Process. 164 (2), 295–300 (2019), DOI: 10.1016/j.sigpro.2019.06.015.
2. Błaszczyk Ł., Snopek K.M. Octonion Fourier transform of real-valued functions of three variables-selected properties and examples, Signal Process. 136, 29–37 (2017), DOI: 10.1016/j.sigpro.2016.11.021.
3. Heredia C.J., Garcia E.A. Espinosa C.V. One dimensional octonion Fourier transform, J. Math. Control. Sci. Appl. 7 (1), 91–106 (2021).
4. Błaszczyk Ł. Octonion Spectrum of 3D Octonion-Valued Signals Properties and Possible Applications, 2018 26th European Signal Processing Conf. (EUSIPCO), IEEE, 2018, DOI: 10.23919/EUSIPCO.2018.8553228.
5. Katunin A. Three-dimensional octonion wavelet transform, J. Appl. Math. Comput. Mech. 13 (1), 33–38 (2014).
6. Moritoh S. Wavelet transforms in Euclidean spaces their relation with wave front sets and Besov, Triebel-Lizorkin spaces, Tohoku Math. J. 47 (4) (2), 555–565 (1995), DOI: 10.2748/tmj/1178225461.
7. Baez J.C. The octonions, Bull. Amer. Math. Soc. 39 (2), 145–205 (2002), DOI: 10.1090/S0273-0979-01-00934-X.
8. Axler S. Measure, Integration & Real Analysis (Springer Nature, 2020), DOI: 10.1007/978-3-030-33143-6.
9. Kumar A., Singh S.K., Singh S.K. A Note on Moritoh Transforms, Creat. Math. and Inform. 33 (2), 185–201 (2024), DOI: 10.37193/CMI.2024.02.05.
10. Hörmander L. The Analysis of Linear Partial Differential Operators II (Springer-Verlag, Berlin Heidelberg, New York, Tokyo, 1983).
11. Singh S.K., Kalita B. The S-transform on Hardy spaces and its duals, Int. J. Anal. Appl. 7 (2), 171–178 (2015).
12. Chuong N.M., Duong D.V. Boundedness of the wavelet integral operator on weighted function spaces, Russ. J. Math. Phys. 20, 268–275 (2013), DOI: 10.1134/S1061920813030023.
13. Yin Ming, Liu Wei, Shui Jun, Wu Jiangmin Quaternion Wavelet Analysis and Application in Image Denoising, Math. Probl. Engineering, 493976 (2012), DOI: 10.1155/2012/493976.
14. Bayro-Corrochano E. The Theory and Use of the Quaternion Wavelet Transform, J. Math. Imaging Vis. 24 (1), 19–35 (2006), DOI: 10.1007/s10851-005-3605-3.
15. Chan W.L. Choi H., Baraniuk R. Quaternion wavelets for image analysis and processing, 2004 Intern. Conf. on Image Processing, 2004. ICIP’04 5, 3057–3060, IEEE, 2004, DOI: 10.1109/ICIP.2004.1421758.
16. Chan W.L., Choi H., Baraniuk R.G. Coherent Multiscale Image Processing Using Dual-Tree Quaternion Wavelets, IEEE Transactions on Image Processing 17 (7), 1069–1082 (2008), DOI: 10.1109/TIP.2008.924282.
17. Lhamu D., Singh S.K. The quaternion Fourier and wavelet transforms on spaces of functions and distributions, Res. Math. Sci. 7 (11) (2020), DOI: 10.1007/s40687-020-00209-4.
18. Lhamu D., Singh S.K., Pandey C.P. The continuous quaternion wavelet transform on function spaces, Boletim da Sociedade Paranaense de Matem. 42 (2024), DOI: 10.5269/bspm.63502.
19. Singh S.K. Besov norms in terms of the S-transform, Afrika Matem. 27 (3), 603–615 (2015), DOI: 10.1007/s13370-015-0365-0.
20. Lhamu D, Singh S.K. Besov norms of the continuous wavelet transform in variable Lebesgue space, J. Pseudo-Differ. Oper. Appl. 11 (3), 1537–1548 (2020), DOI: 10.1007/s11868-020-00361-z.
Review
For citations:
Kumar A., Singh S.K., Singh Sh.K. The octonionic Moritoh transform on octonionic function spaces. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):61-73. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-61-73