

An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time
https://doi.org/10.26907/0021-3446-2025-2-39-52
Abstract
This work investigates an initial-boundary value and an inverse coefficient problem of determining a time dependent coefficient in the fractional wave equation with the conformable fractional derivative and an integral. In the beginning, the initial boundary value problem (direct problem) is considered. By the Fourier method this problem is reduced to equivalent integral equations. Then, using the technique of estimating these functions and the generalized Gronwall inequality, we get apriori estimate for the solution via the unknown coefficient which will be used to study the inverse problem. The inverse problem is reduced to an equivalent integral equation of Volterra type. To show the existence and uniqueness of the solution to this equation, the Banach principle is applied. The local existence and uniqueness results are obtained.
About the Authors
D. K. DurdievUzbekistan
Durdimurod K. Durdiev.
9 University str., Tashkent, 100174; 11 M. Ikbal str., Bukhara, 200117
T. R. Suyarov
Uzbekistan
Tursunbek R. Suyarov.
9 University str., Tashkent, 100174; 11 M. Ikbal str., Bukhara, 200117
Kh. Kh. Turdiev
Uzbekistan
Khalim Kh. Turdiyev.
9 University str., Tashkent, 100174; 11 M. Ikbal str., Bukhara, 200117
References
1. Magin R.L. Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (5), 1586–1593 (2010).
2. Meral F.C., Royston T.J., Magin R. Fractional calculus in viscoelasticity: An experimental study, Commun. Nonlinear Sci. Numer. Simul. 15 (4), 939–945 (2010).
3. Khalil R., Horani M.Al., Yousef A., Sababheh M. A new definition of fractional derivative, J. Comput. Appl. Math. 264, 65–70 (2014).
4. Wang Y., Zhou J., Li Y. Fractional Sobolev’s Spaces on Time Scales via Conformable Fractional Calculus and Their Application to a Fractional Differential Equation on Time Scales, Adv. Math. Phys. 2016, 1–21, article 963649121 (2016).
5. Jarad F., Ugurlu E., Abdeljawad T., Baleanu D. On a new class of fractional operators, Adv. Diff. Equat. 2017 (1), article 247 (2017).
6. Дурдиев У.Д. Обратная задача об источнике для уравнения вынужденных колебаний балки, Изв. вузов. Матем. (8), 10–22 (2023).
7. Дурдиев Д.К., Нуриддинов Ж.З. Единственность задачи определения ядра в интегро-дифференциальном параболическом уравнении с переменными коэффициентами, Изв. вузов. Матем. (11), 3–14 (2023).
8. Cakmak Y. Inverse nodal problem for a conformable fractional diffusion operator, Inverse Probl. Sci. Engineering 29 (9), 1308–1322 (2021).
9. Ashurov R., Umarov S. Determination of the Order of Fractional Derivative for Subdiffusion Equations, Fract. Calc. Appl. Anal. 23 (6), 1647–1662 (2020).
10. Alimov Sh., Ashurov R. Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation, J. Inverse and Ill-posed Probl. 28 (5), 651–658 (2020).
11. Акрамова Д.И. Обратная коэффициентная задача для дробно-диффузионного уравнения с оператором Бесселя, Изв. вузов. Матем. (9), 45–57 (2023).
12. Sakamoto K., Yamamoto M. Inverse source problem with a final overdetermination for a fractional diffusion equation, Math. Control Relat. Fields 1 (4), 509–518 (2011).
13. Kirane M., Malik S.A., Al-Gwaiz M.A. An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Meth. Appl. Sci. 36 (9), 1056–1069 (2013).
14. Karimov E., Al-Salti N., Kerbal S. An Inverse Source Non-local Problem for a Mixed Type Equation with a Caputo Fractional Differential Operator, East Asian J. Appl. Math. 7 (2), 417–438 (2017).
15. Durdiev D.K. Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain, Вестн. Самарск. гос. техн. ун-та. Сер. Физ.-матем. науки, 26 (2), 355– 367 (2022).
16. Miller L., Yamamoto M. Coefficient inverse problem for a fractional diffusion equation, Inverse Probl. 29 (7), 075013 (2013).
17. Дурдиев Д.К., Жумаев Ж.Ж. Обратная задача определения ядра интегро-дифференциального уравнения дробной диффузии в ограниченной области, Изв. вузов. Матем. (10), 22–35 (2023).
18. Durdiev D.K., Durdiev U.D. An inverse problem of finding a time-dependent coefficient in a fractional diffusion equation, Turkish J. Math. 47 (5), 1437–1452 (2023).
19. Durdiev D.K. Inverse coefficient problem for the time-fractional diffusion equation, Eurasian J. Math. Comput. Appl. 9 (1), 44–54 (2022).
20. Турдиев Х.Х. Обратные коэффициентные задачи для временно-дробного волнового уравнения с обобщенной производной Римана–Лиувилля по времени, Изв. вузов. Матем. (10), 46–59 (2023).
21. Durdiev D.K., Turdiev H.H. Inverse coefficient problem for a time-fractional wave equation with initial-boundary and integral type overdetermination conditions, Math. Meth. Appl. Sci. 47 (6), 5329–5340 (2024).
22. Durdiev D.K., Turdiev H.H. Inverse Coefficient Problem for Fractional Wave Equation with the Generalized Riemann–Liouville Time Derivative, Indian J. Pure Appl. Math. (2023), DOI : 10.1007/s13226-023-00517-9.
23. Durdiev U.D. Problem of determining the reaction coefficient in a fractional diffusion equation, Diff. Equat. 57 (9), 1195–1204 (2021).
24. Aleroev T.S., Kirane M., Malik S.A. Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition, Electron. J. Diff. Equat. 2013 (270), 1–16 (2013).
25. Durdiev D.K., Totieva Z.D. The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equation, Math. Met. Appl. Sci. 41 (17), 8019–8032 (2018).
26. Дурдиев Д.К., Турдиев Х.Х. Задача определения ядер в системе интегро-дифференциальных уравнений Максвелла, Сиб. журн. индустр. матем. 24 (2), 38–61 (2021).
27. Дурдиев Д.К., Турдиев Х.Х. Обратная задача для гиперболической системы первого порядка с памятью, Дифференц. уравнения 56 (12), 1666–1675 (2020).
28. Дурдиев Д.К., Турдиев Х.Х. Задача определения ядер в системе интегро-дифференциальных уравнений акустики, Дальневост. матем. журн. 23 (2), 190–210 (2023).
29. Durdiev D.K. Inverse coefficient problem for the time-fractional diffusion equation, Eurasian J. Math. Comput. Appl. 9 (1), 44–54 (2021).
30. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler Functions, Related Topics and Applications (Springer-Verlag, Berlin, 2014).
31. Abdeljawad T. On conformable fractional calculus, J. Comput. Appl. Math. 279, 57–66 (2015).
32. Saad A., Brahim N. Analytical solution for the conformable fractional telegraph equation by Fourier method, Proc. Int. Math. Sci. 2 (1), 1–6 (2020).
33. Henry D. Geometric Theory of Semi linear Parabolic Equations (Springer, Berlin, 1981).
34. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа (Наука, М., 1976).
Review
For citations:
Durdiev D.K., Suyarov T.R., Turdiev Kh.Kh. An inverse coefficient problem for the fractional telegraph equation with the corresponding fractional derivative in time. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):39-52. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-39-52