Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the functor properties of some hyperspace topologies

https://doi.org/10.26907/0021-3446-2025-2-15-28

Abstract

A continuous map X f→ Y and its extension expτ X f→ expτ Y are considered (expτ X is the hyperspace (endowed with a topology τ) of the topological space X, (F) = [f (F)]Y (the closure of a set f(F) in the space Y)). A necessary and sufficient condition (a modification of the Harris’ (WO) condition) of continuity of the map in the cases when τ = τLF (the locally finite topology) and τ = τF (the Fell topology) is found. When X and Y are metrizable spaces the topology τinf, as the infimum of all Hausdorff metric topologies, is considered. A sufficient condition (TUC) condition) of continuity of the map in the case when τ = τinf is found. It is also shown, that this condition is necessary, when the space Y is locally compact and second countable. The results are commented from the point of view of the category theory.

About the Authors

A. S. Bedritskiy
Belarusian State University
Belarus

Aleksander S. Bedritskiy.

4 Nezavisimosti Ave., Minsk, 220030



V. L. Timokhovich
Belarusian State University
Belarus

Vladimir L. Timokhovich.

4 Nezavisimosti Ave., Minsk, 220030



References

1. Кукрак Г.О., Тимохович В.Л. Расширение Волмэна и экспонента. Функториальные свойства, Тр. ин-та. матем. НАН Беларуси 30 (1–2), 37–43 (2022).

2. Бедрицкий А.С., Тимохович В.Л. Модификация условия (WO) Харриса и функториальные свойства экспоненты и расширения Волмэна, Тр. ин-та. матем. НАН Беларуси 30 (1–2), 4–11 (2022).

3. Harris D. The Wallman compactification as a functor, General Topology and Appl. 1 (3), 273–281 (1971).

4. Vietoris L. Bereiche zweiter Ordnung, Monatshefte fu¨r Math. Phys. 32 (1), 258–280 (1922).

5. Michael E. Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71, 152–182 (1951).

6. Энгелькинг Р. Общая топология (Мир, М., 1986).

7. Fell J.M.G. A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13, 472–476 (1962).

8. Beer G.A. Topologies on Closed and Closed Convex Sets (Kluwer Acad. Pub., Dordrecht, 1993).

9. Beer G.A., Himmelberg C.J., Prikry K., van Vleck F.S. The locally finite topology on 2X , Proc. Amer. Math. Soc. 101 (1), 168–172 (1987).

10. Hausdorff F. Grundzu¨ge der Mengenlehre (Verlag Von Veit and Comp., Leipzig, 1914).

11. Costantini C., Vitolo P. On the Infimum of the Hausdorff Metric Topologies, Proc. London Math. Soc. s3-70 (2), 441–480 (1995).

12. Бедрицкий А.С., Тимохович В.Л. О топологиях экспоненты метризуемого топологического пространства, Тр. ин-та. матем. НАН Беларуси 31 (2), 15–27 (2023).

13. Пономарев В.И. О замкнутых отображениях, Успехи матем. наук 14 (4), 203–206 (1959).

14. Тимохович В.Л., Фролова Д.С. О свойствах инфимальной топологии пространства отображений, Изв. вузов. Матем. (4), 87–99 (2016).


Review

For citations:


Bedritskiy A.S., Timokhovich V.L. On the functor properties of some hyperspace topologies. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(2):15-28. (In Russ.) https://doi.org/10.26907/0021-3446-2025-2-15-28

Views: 151


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)