

Nonlocal separable elliptic and parabolic equations and applications
https://doi.org/10.26907/0021-3446-2025-1-66-92
Abstract
The regularity properties of nonlocal anisotropic elliptic equations with parameters are investigated in abstract weighted Lp spaces. The equations include the variable coefficients and abstract operator function A = A (x) in a Banach space E in leading part. We find the sufficient growth assumptions on A and appropriate symbol polynomial functions that guarantee the uniformly separability of the linear problem. It is proved that the corresponding anisotropic elliptic operator is sectorial and is also the negative generator of an analytic semigroup. Byusing these results, the existence and uniqueness of maximal regular solution of the nonlinear nonlocal anisotropic elliptic equation is obtained in weighted Lp spaces. In application, the maximal regularity properties of the Cauchy problem for degenerate abstract anisotropic parabolic equation in mixed Lp norms, the boundary value problem for anisotropic elliptic convolution equation, the Wentzel-Robin type boundary value problem for degenerate integro-differential equation and infinite systems of degenerate elliptic integro-differential equations are obtained.
About the Authors
V. B. ShakhmurovAzerbaijan
Veli B. Shakhmurov.
Dosemealti, Antalya, 07190 Turkey; 194 Al. Alukhtarov str., Baku, AZ1001 Republic of Azerbaijan; 31 Istiglaliyat str., Baku, AZ1001 Republic of Azerbaijan
Н. К. Musaev
Azerbaijan
Hummet K. Musaev.
23 Z. Khalilov str., Baku, AZ1148
References
1. Agarwal R., O’Regan D., Shakhmurov V.B. Separable anisotropic differential operators in weighted abstract spaces and applications, J. Math. Anal. Appl. 338 (2), 970-983 (2008).
2. Amann H. Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1), 5-56 (1997).
3. Arendt W., Bu S. Tools for maximal regularity, Math. Proc. Camb. Phil. Soc. 134 (2), 317-336 (2003).
4. Denk R., Hieber M., Priiss J. R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (788) (2003).
5. Dore G., Yakubov S. Semigroup estimates and non coercive boundary value problems, Semigroup Forum 60 (1), 93-121 (2000).
6. Goldstain J.A. Semigroups of linear operators and applications (Oxford Univ. Press, New York, 1985).
7. Глушак А.В., Авад X.K. О разрешимости абстрактного дифференциального уравнения дробного порядка с переменным оператором, Современ. матем. Фундамент, наир. 47, 18-32 (2014).
8. Krein S.G. Linear differential equations in Banach space (Amer. Math. Soc., Providence, 1971).
9. Keyantuo V., Lizama C. Maximal regularity for a class of integro-differential equations with infinite delay in Banach spaces, Studia Math. 168 (1), 25-50 (2005).
10. Levitan В.М., Zhikov V.V. Almost periodic functions and differential equations (Cambridge Univ. Press, 1983).
11. Poblete V. Solutions of second-order integro-differential equations on periodic Besov spaces, Proc. Edinb. Math. Soc. 50 (2), 477-492 (2007).
12. Priiss J. Evolutionary integral equations and applications (Birkhaser, Basel, 1993).
13. Pisier G. Holomorphic semi-groups and the geometry of Banach spaces, Annal Math. 115 (2), 375-392 (1982).
14. Shakhmurov V.B. Regular degenerate separable differential operators and applications, Potential Anal. 35 (3), 201-212 (2011).
15. Shakhmurov V.B. Operator-valued Fourier multipliers in vector-valued function spaces and application, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. Mathematics 40 (4), 153-174 (2020).
16. Yakubov S., Yakubov Ya. Differential-operator equations. Ordinary and partial differential equations (Boca Raton, Chapmen and Hall /CRC, 2000).
17. Zacher R. Weak solutions of abstract evolutionary integro-differential equations in Hilbert spaces, Funk. Ekvac. 52 (1), 1-18 (2009).
18. Житомирский Я.И. Задача Коши для систем линейных уравнений в частных производных с дифференциальными операторами типа Бесселя, Матем. сб. 36 (78) (2), 299-310 (1955).
19. Xiang М., Radulescu V.D., Zhang В. Nonlocal Kirchhoff Problems with Singular Exponential Nonlinearity, Appl. Math. Optim. 84 (4), 915-954 (2021), DOI: 10.1007/s00245-020-09666-3.
20. Borichev A. Convolution equations with restrictions on supports, Algebra i Analiz 14 (2002)(2), 1-10; St.-Petersburg Math. J. 14 (2003)(2), 179-187.
21. Boi S., Capasso V., Morale D. Modeling the aggregative behavior of ants of the species Polyergus rufescent, Nonlinear Anal. Real World Appl. 1 (1), 163-176 (2000).
22. Chen X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Diff. Equat. 2 (1), 125-160 (1997).
23. Киприянов И.А. Оператор дробного дифференцирования и степени эллиптиеских операторов, Докл. АН СССР, 131 (2), 238-241 (1960).
24. Киприянов И.А. Преобразование Фурье-Весселя и теоремы вложения для весовых классов, Тр. МИАН СССР, 89, 130-213 (1967).
25. Левитан В.М. Разложение по функциям Бесселя в ряды и интегралы Фурье, УМН 6 (2(42)), 102-143 (1951).
26. Ляхов Л.Н. B-гиперсингулярные интегралы и их приложения к описанию функциональных классов Киприянова и интегральным уравнениям с B-потенциальными ядрами (ЛГПУ, Липецк, 2007).
27. Ляхов Л.Н., Санина Е.Л. Дифференциальные и интегральные операции в скрытой сферической симметрии и размерность кривой Коха, Матем. заметки 113 (4), 517-528 (2023).
28. Mayboroda S., Maz’ya V. Regularity of solutions to the polyharmonic equation in general domains, Invent. Math. 196 (1), 1-68 (2014).
29. Muravnik A. On Global Solutions of Hyperbolic Equations with Positive Coefficients at Nonlocal Potential, Mathematics 12 (3), 392 (2024).
30. Муравник А.В. Функционально-дифференциальные параболические уравнения: интегральные представления и качественные свойства решений задачи Коши, Современ. матем. Фундамент, наир. 52, 3-141 (2014).
31. Напалков В.В. Уравнения свертки в многомерном пространствах (Наука, М., 1982).
32. Popov V. A., Skubachevskii A.L. On smoothness of solutions of some elliptic functional-differential equations with degeneration, Russ. J. Math. Phys. 4 (20), 492-507 (2013).
33. Ситник C.M., Шишкина Э.Л. Метод операторов преобразования для дифференциальных уравнений с операторами Бесселя (Физматлит, М., 2019).
34. Shakhmurov V.B., Shahmurov R.V. Maximal В-regular integro-differential equations, Chin. Annal. Math. Ser. B, 30B(l), 39-50 (2008).
35. Shakhmurov V.B. Embedding theorems and maximal regular differential-operator equations in Banach-valued function spaces, J. Inequal. Appl. (4), 329-345 (2005).
36. Shakhmurov V.B., Shahmurov R.V. Sectorial operators with convolution term, Math. Inequal. Appl. 13 (2), 387-404 (2010).
37. Shakhmurov V.B., Musaev H.K. Separability properties of convolution-differential operator equations in weighted Lp spaces, Appl. Compt. Math. 14 (2), 221-233 (2015).
38. Скубачевский А.Л. Неклассические краевые задачи. I, Современ. матем. Фундамент, наир. 26, 3-132 (2007).
39. Скубачевский А.Л. Неклассические краевые задачи. II, Современ. матем. Фундамент, наир. 33, 3-179 (2009).
40. Скубачевский А.Л. Нелокальные эллиптические задачи с вырождением, Дифференц. уравнения, 19 (3), 457-470 (1983).
41. Shishkina Е., Karabucak М. Singular Cauchy problem for generalized homogeneous Euler-Poisson-Darboux equation, Матем. заметки СВФУ 25 (2), 85-96 (2018).
42. Topaz C.M., Bertozzi A.L., Lewis M.A. A nonlocal continuum model for biological aggregation, Bull. Math. Biol. 68 (7), 1601-1623 (2006).
43. Ashyralyev A., Cuevas C., Piskarev S. On well-posedness of difference schemes for abstract elliptic problems in Lp(0,T.; E) spaces, Numer. Func. Anal. Opt. 29 (1-2), 43-65 (2008).
44. Girardi M., Weis L. Operator-valued multiplier theorems on Besov spaces, Math. Nachr. 251, 34-51 (2003).
45. Musaev H.K., Shakhmurov V.B. Regularity properties of degenerate convolution-elliptic equations, Bound. Value Probl. 2016 (50), 1-19 (2016).
46. Favini A., Goldstein G.R., Goldstein J.A., Romanelli S. Degenerate second order differential operators generating analytic semigroups in Lp and W1,p, Math. Nachr. 238, 78-102 (2002).
47. Dehghan M., Shakeri F. Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopic perturbation method, Program in electromagnetic research, PIER 78, 361-378 (1978).
48. Keyantuo V., Warma M. The wave equation with Wentzell-Robin boundary conditions on Lp-spaces, J. Diff. Equat. 229 (2), 680-697 (2006).
49. Grafakos L. Modern Fourier analysis, 2Nd ed., Graduate Texts in Mathematics 850 (Springer, New York, 2009).
50. Triebel H. Interpolation theory, function spaces, differential operators (North-Holland Publ. Co., Amsterdam-New York, 1978).
51. Burkholder D.L. A geometric condition that implies the existence of certain singular integral of Banach-space-valued functions, Conf, on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, III, 1981, Wadsworth Math. Ser. Belmont), 270-286 (1983).
52. Weis L. Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann. 319 (4), 735-758 (2001).
Review
For citations:
Shakhmurov V.B., Musaev Н.К. Nonlocal separable elliptic and parabolic equations and applications. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(1):66-92. (In Russ.) https://doi.org/10.26907/0021-3446-2025-1-66-92