The second-kind involutions of upper triangular matrix algebras
https://doi.org/10.26907/0021-3446-2024-11-105-110
Abstract
. We provide a criterion for the equivalency of the second-kind involutions of upper triangular matrix algebras over commutative rings. For an algebra Tn(F ) of upper triangular matrices over a field F it is proven that two involutions are equivalent if and only if they coincide after restriction to F .
About the Author
D. T. TapkinRussian Federation
Danil Tagirzyanovich Tapkin
18 Kremlyovskaya str., Kazan, 420008
References
1. Albert A.A Ivanov I.I. Structure of algebras, Amer. Math. Soc. Colloquium Publ. 24 (AMS, Providence, R.I., 1961).
2. Vincenzo O.M., Koshlukov P., Scala R. Involutions for upper triangular matrix algebras, Adv. Appl. Math. 37 (4), 541–568 (2006).
3. Кульгускин И.А., Тапкин Д.Т. Инволюции в алгебрах верхнетреугольных матриц, Изв. вузов. Матем. (6), 11–30 (2023).
4. Urure R.I.Q., Silva D.C. Involutions of the second kind for upper triangular matrix algebras, Commun. Algebra 51 (6), 2326–2333 (2023).
5. Kezlan T.P. A note on algebra automorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 135, 181–184 (1990).
Review
For citations:
Tapkin D.T. The second-kind involutions of upper triangular matrix algebras. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(11):105-110. (In Russ.) https://doi.org/10.26907/0021-3446-2024-11-105-110