Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

The second-kind involutions of upper triangular matrix algebras

https://doi.org/10.26907/0021-3446-2024-11-105-110

Abstract

. We provide a criterion for the equivalency of the second-kind involutions of upper triangular matrix algebras over commutative rings. For an algebra Tn(F ) of upper triangular matrices over a field F it is proven that two involutions are equivalent if and only if they coincide after restriction to F .

About the Author

D. T. Tapkin
Kazan Federal University
Russian Federation

Danil Tagirzyanovich Tapkin

18 Kremlyovskaya str., Kazan, 420008



References

1. Albert A.A Ivanov I.I. Structure of algebras, Amer. Math. Soc. Colloquium Publ. 24 (AMS, Providence, R.I., 1961).

2. Vincenzo O.M., Koshlukov P., Scala R. Involutions for upper triangular matrix algebras, Adv. Appl. Math. 37 (4), 541–568 (2006).

3. Кульгускин И.А., Тапкин Д.Т. Инволюции в алгебрах верхнетреугольных матриц, Изв. вузов. Матем. (6), 11–30 (2023).

4. Urure R.I.Q., Silva D.C. Involutions of the second kind for upper triangular matrix algebras, Commun. Algebra 51 (6), 2326–2333 (2023).

5. Kezlan T.P. A note on algebra automorphisms of triangular matrices over commutative rings, Linear Algebra Appl. 135, 181–184 (1990).


Review

For citations:


Tapkin D.T. The second-kind involutions of upper triangular matrix algebras. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(11):105-110. (In Russ.) https://doi.org/10.26907/0021-3446-2024-11-105-110

Views: 78


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)