Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Jordan test for the Haar-type systems

https://doi.org/10.26907/0021-3446-2024-11-61-80

Abstract

We consider Haar-type systems, which are generated by a (generally speaking, unbounded) sequence $ \{ p_n \}_{n=1}^\infty $, and which are defined on the modified segment $ [0, 1]^* $, i.\,e., on the segment [0, 1] whose $ \{ p_n \}$-rational points are calculated two times. The main result of this work is a Jordan-type test for the pointwise and uniform convergence of Fourier series with respect to Haar-type systems. It is shown that the test obtained in the paper can not be improved. An example of a function of bounded variation, whose Fourier series with respect to Haar-type system diverges at some point, is constructed in the case of $ \sup\limits_n p_n = \infty$. Thus for any unbounded sequence $ \{ p_n \}_{n=1}^\infty $ there exists a monotone function whose Fourier series with respect to Haar-type system, generated by the given sequence $ \{ p_n \}_{n=1}^\infty $, diverges at some point. It is found that the Jordan test of convergence of Fourier series with respect to Haar-type systems does not differ from the Dini--Lipschitz condition for those systems. As the Dini--Lipschitz condition was considered earlier, the main value of this work is the construction of a corresponding counterexample, i.\,e., the construction of an example (a model) of a function of bounded variation whose Fourier series with respect to Haar-type Systems diverges at some point. In the counterexamples from the earlier works on the Dini--Lipschitz criterion (as well as for all Dini convergence criteria), the functions were {\it not of bounded variation}. The article's conclusion discusses how the Jordan convergence criterion evolved when transitioning from trigonometric systems of functions to Price systems (and to N.Ya. Vilenkin systems), and from there to generalized Haar systems and Haar-type systems.

About the Author

V. I. Shcherbakov
Moscow Technical University of Communication and Information
Russian Federation

Viktor Innokent’evich Shcherbakov

32 Narodnogo Opolchenija str., Mosсow, 123423 



References

1. Виленкин H.Я. Об одном классе полных ортонормальных систем, Изв. АН СССР. Сер. Матем. 11 (4), 363–400 (1947).

2. Агаев Г.Н., Виленкин Н.Я., Джафарли Г.М., Рубинштейн А.И. Мультипликативные системы функций и гармонический анализ на нульмерных группах (ЭЛМ, Баку, 1981).

3. Качмаж С., Штейнгауз Г. Теория ортогональных рядов. Дополнения Н.Я. Виленкина, §1, п. 6, с. 475– 479 (Физматгиз, М., 1958).

4. Голубов Б.И., Рубинштейн А.И. Об одном классе систем сходимости, Матем. сб. 71 (113) (1), 96–115 (1966).

5. Лукомский С.Ф. О рядах Хаара на компактной нульмерной группе, Изв. Саратовск. ун-та. Сер. Матем. Механ. Информатика 9 (1), 24–29 (2009).

6. Голубов Б.И. Об одном классе полных ортогональных систем, Сиб. матем. журн. 9 (2), 297–314 (1968).

7. Щербаков В.И. Расходимость рядов Фурье по обобщенным системам Хаара в точках непрерывности функции, Изв. вузов. Матем. (1), 49–68 (2016).

8. Щербаков В.И. Признак Дини–Липшица для обобщенных систем Хаара, Изв. Саратовск. ун-та, Сер. Матем. Механ. Информатика 16 (4), 435–448 (2016).

9. Бари Н.К. Тригонометрические ряды (Физматгиз, М., 1961).

10. Зигмунд A. Тригонометрические ряды, Т. 1 (Мир, М., 1965).

11. Щербаков В.И. О поточечной сходимости рядов Фурье по мультипликативным системам, Вестн. Московск. ун-та. Сер. 1. Матем., механ. (2), 37–42 (1983).

12. Onneweer C.W., Waterman D. Uniform convergence of Fourier Series on groups. I, Michigan Math. J. 18 (3), 265–273 (1971).


Review

For citations:


Shcherbakov V.I. Jordan test for the Haar-type systems. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(11):61-80. (In Russ.) https://doi.org/10.26907/0021-3446-2024-11-61-80

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)