Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

A note on Visser’s inequality

https://doi.org/10.26907/0021-3446-2024-11-51-60

Abstract

Certain new estimates for the coefficients of a polynomial are obtained, which among other things furnishes new but equivalent forms of some well-known results of V.K. Jain and S. Gulzar.

About the Authors

M. Shafi
University of Kashmir
India

Mohmmad Shafi

Srinagar, 190006 India



N. A. Rather
University of Kashmir
India

Nisar Ahmad Rather

Srinagar, 190006 India



S. Gulzar
Government College for Engineering and Technology
India

Suhail Gulzar

 Ganderbal, Kashmir, India



References

1. Mahler K. An application of Jensen’s formula to polynomials, J. Math. 7 (2), 98–100 (1960).

2. Visser C. A simple proof of certain inequalities concerning polynomials, Koninkl. Nederl. Akad. Wetensch. Proc. 47, 276–281 (1945).

3. Gulzar S. On estimates for the coeficients of a polynomial, Comp. Rend. Math. 354 (4), 357–363 (2016).

4. Gulzar S., Rather N.A. Lp inequalities for the Schur–Szego¨ composition of polynomials, Acta Math. Hung. 151 (1), 124–138 (2017).

5. Gulzar S. Some Zygmund type inequalities for the s-th derivative of polynomials, Anal. Math. 42, 339–352 (2016).

6. Гулзар С., Разер Н.А., Вани М.Ш. О неравенстве Виссера, связанном с оценкой коэффициентов поли-номов, Изв. вузов. Матем. (3), 13–20 (2022).

7. Jain V.K. Visser’s inequality and its sharp refinement, Bull. Math. Soc. Sci. Math. Roum. Tome 49 (97) (2), 171–175 (2006).

8. Rahman Q.I., Schmeisser G. Lp inequalities for polynomial, J. Approx. Theory 53, 26–32 (1988).

9. Арестов В.В. Об интегральных неравенствах для тригонометрических полиномов и их производных, Изв. АН СССР. Сер. Матем. 45 (1), 3–22 (1981).

10. Арестов В.В. Интегральные неравенства для алгебраических многочленов на единичной окружности, Матем. заметки 48 (4), 7–18 (1990).

11. Po´lya G., Szego¨ G. Problems and Theorem in Analysis I (Springer-Verlag, Berlin, 1978).

12. Rahman Q.I., Schmeisser G. Analytic Theory of Polynomials (Oxford Univ. Press, New York, 2002).


Review

For citations:


Shafi M., Rather N.A., Gulzar S. A note on Visser’s inequality. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(11):51-60. (In Russ.) https://doi.org/10.26907/0021-3446-2024-11-51-60

Views: 84


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)