Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation

https://doi.org/10.26907/0021-3446-2024-10-77-89

Abstract

In this paper we consider the family of operators μH:= ΔΔVμ,     μ  > 0, that is,  a bilaplacian with  a finite-dimensional perturbation on  a one-dimensional lattice  Z , where Δ  is  a  discrete  Laplacian,  and  Vμ   is  an  operator  of  rank  two.  It  is  proved  that  for  any  μ  > 0 the discrete  spectrum  μH  is  two-element  e1(μ ) < 0 and  e2(μ ) < 0.  We find  convergent  expansions of the eigenvalues ei(μ ), i = 1, 2 in a small neighborhood of zero for small μ  > 0.

About the Authors

T. Kh. Rasulov
Bukhara State University
Uzbekistan

Tulkin Khusenovich Rasulov 

11 M.Ikbol str., Bukhara, 200118



A. M. Khalkhuzhaev
Samarkand State University after named Sharof Rashidov; V.I. Romanovsky Institute of Mathematics of the Academy of Sciences of Uzbekistan
Uzbekistan

Miyassarovich Khalkhuzhaev

15 University blvrd., Samarkand, 140104,

9 University str., Tashkent, 100174



M. A. Pardabaev
Uzbek-Finnish Pedagogical Institute
Uzbekistan

Mardon Almuratovich Pardabaev 

166 Spitamen str., Samarkand, 140104



Kh. G. Khayitova
Bukhara State University
Uzbekistan

Khilola Gafurovna Khayitova 

11 M.Ikbol str., Bukhara, 200118



References

1. McKenna P.J., Walter W. Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal. 98, 167–177 (1987).

2. Hoffmann S., Plonka G., Weickert J. Discrete Green’s Functions for Harmonic and Biharmonic Inpainting with Sparse Atoms. In: X. Tai et al (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition., EMMCVPR. Lect. Notes Computer Sci. 8932, 169–182 (2015).

3. Ben-Artzi M., Katriel G. Spline functions, the biharmonic operator and approximate eigenvalues, Numer. Math. 141, 839–879 (2019).

4. Graef J., Heidarkhani Sh., Kong L., Wang M. Existence of solutions to a discrete fourth order boundary value problem, J. Diff. Equ. Appl. 24 (6), 849–858 (2018).

5. Tee G.J. A Novel Finite-Difference Approximation to the Biharmonic Operator, Computer J. 6, 177–192 (1963).

6. Andrew A., Paine J. Correction of finite element estimates for Sturm–Liouville eigenvalues, Numer. Math. 50, 205–215 (1986).

7. Boumenir A. Sampling for the fourth-order Sturm–Liouville differential operator, J. Math. Anal. Appl. 278 (2), 542–550 (2003).

8. Rattana A., B¨ockmann C. Matrix methods for computing eigenvalues of Sturm–Liouville problems of order four, J. Comput. Appl. Math. 249, 144–156 (2013).

9. Albeverio S., Lakaev S., Makarov K., Muminov Z. The Threshold Effects for the Two-Particle Hamiltonians on Lattices, Commun. Math. Phys. 262, 91–115 (2006).

10. Graf G., Schenker D. 2-magnon scattering in the Heisenberg model, Ann. Inst. Henri Poincar´e, Phys. Th´eor. 67 (1), 91–107 (1997).

11. Lakaev S.N., Khalkhuzhaev A.M., Lakaev Sh.S. Asymptotic behavior of an eigenvalue of the two-particle discrete Schr¨odinger operator, Theoret. and Math. Phys. 171 (3), 800–811 (2012).

12. Lakaev S.N., Kholmatov Sh.Yu. Asymptotics of eigenvalues of two-particle Schr¨odinger operators on lattices with zero-range interaction, J. Phys. A: Math. Theor. 44 (13) (2011).

13. Kholmatov Sh., Khalkhuzhaev A., Pardabaev M. Expansion of eigenvalues of the perturbed discrete bilaplacian, Monatshefte fur Math. 197, 607–633 (2022).

14. Kholmatov Sh., Pardabaev M. On Spectrum of the Discrete Bilaplacian with Zero-Range Perturbation, Lobachevskii J. Math. 42 (6), 1286–1293 (2021).

15. Klaus M. On the bound states of Schr¨odinger operators in one dimension, Ann. Phys. 108 (2), 288–300 (1977).

16. Simon B. The bound state of weakly coupled Schr¨odinger operators in one and two dimensions, Ann. Phys. 97 (2), 279–288 (1976).

17. Рид М., Саймон Б. Методы современной математической физики, Т. 4, Анализ операторов (Мир, М., 1982).

18. Бахронов Б.И., Расулов Т.Х., Рехман М. Условия существования собственных значений трехчастичного решетчатого модельного гамильтониана, Изв. вузов. Матем. (7), 3–12 (2023).

19. Абдуллаев Ж.И., Халхужаев А.М., Расулов Т.Х. Инвариантные подпространства и собственные значения трехчастичного оператора Шрёдингера, Изв. вузов. Матем. (9), 3–19 (2023).

20. Расулов Т.Х., Мухитдинов Р.Т. Конечность дискретного спектра модельного оператора, ассоциированного с системой трех частиц на решетке, Изв. вузов. Матем. (1), 61–70 (2014).


Review

For citations:


Rasulov T.Kh., Khalkhuzhaev A.M., Pardabaev M.A., Khayitova Kh.G. Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):77-89. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-77-89

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)