Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation
https://doi.org/10.26907/0021-3446-2024-10-77-89
Abstract
In this paper we consider the family of operators μH:= ΔΔ— Vμ, μ > 0, that is, a bilaplacian with a finite-dimensional perturbation on a one-dimensional lattice Z , where Δ is a discrete Laplacian, and Vμ is an operator of rank two. It is proved that for any μ > 0 the discrete spectrum μH is two-element e1(μ ) < 0 and e2(μ ) < 0. We find convergent expansions of the eigenvalues ei(μ ), i = 1, 2 in a small neighborhood of zero for small μ > 0.
About the Authors
T. Kh. RasulovUzbekistan
Tulkin Khusenovich Rasulov
11 M.Ikbol str., Bukhara, 200118
A. M. Khalkhuzhaev
Uzbekistan
Miyassarovich Khalkhuzhaev
15 University blvrd., Samarkand, 140104,
9 University str., Tashkent, 100174
M. A. Pardabaev
Uzbekistan
Mardon Almuratovich Pardabaev
166 Spitamen str., Samarkand, 140104
Kh. G. Khayitova
Uzbekistan
Khilola Gafurovna Khayitova
11 M.Ikbol str., Bukhara, 200118
References
1. McKenna P.J., Walter W. Nonlinear oscillations in a suspension bridge, Arch. Rational Mech. Anal. 98, 167–177 (1987).
2. Hoffmann S., Plonka G., Weickert J. Discrete Green’s Functions for Harmonic and Biharmonic Inpainting with Sparse Atoms. In: X. Tai et al (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition., EMMCVPR. Lect. Notes Computer Sci. 8932, 169–182 (2015).
3. Ben-Artzi M., Katriel G. Spline functions, the biharmonic operator and approximate eigenvalues, Numer. Math. 141, 839–879 (2019).
4. Graef J., Heidarkhani Sh., Kong L., Wang M. Existence of solutions to a discrete fourth order boundary value problem, J. Diff. Equ. Appl. 24 (6), 849–858 (2018).
5. Tee G.J. A Novel Finite-Difference Approximation to the Biharmonic Operator, Computer J. 6, 177–192 (1963).
6. Andrew A., Paine J. Correction of finite element estimates for Sturm–Liouville eigenvalues, Numer. Math. 50, 205–215 (1986).
7. Boumenir A. Sampling for the fourth-order Sturm–Liouville differential operator, J. Math. Anal. Appl. 278 (2), 542–550 (2003).
8. Rattana A., B¨ockmann C. Matrix methods for computing eigenvalues of Sturm–Liouville problems of order four, J. Comput. Appl. Math. 249, 144–156 (2013).
9. Albeverio S., Lakaev S., Makarov K., Muminov Z. The Threshold Effects for the Two-Particle Hamiltonians on Lattices, Commun. Math. Phys. 262, 91–115 (2006).
10. Graf G., Schenker D. 2-magnon scattering in the Heisenberg model, Ann. Inst. Henri Poincar´e, Phys. Th´eor. 67 (1), 91–107 (1997).
11. Lakaev S.N., Khalkhuzhaev A.M., Lakaev Sh.S. Asymptotic behavior of an eigenvalue of the two-particle discrete Schr¨odinger operator, Theoret. and Math. Phys. 171 (3), 800–811 (2012).
12. Lakaev S.N., Kholmatov Sh.Yu. Asymptotics of eigenvalues of two-particle Schr¨odinger operators on lattices with zero-range interaction, J. Phys. A: Math. Theor. 44 (13) (2011).
13. Kholmatov Sh., Khalkhuzhaev A., Pardabaev M. Expansion of eigenvalues of the perturbed discrete bilaplacian, Monatshefte fur Math. 197, 607–633 (2022).
14. Kholmatov Sh., Pardabaev M. On Spectrum of the Discrete Bilaplacian with Zero-Range Perturbation, Lobachevskii J. Math. 42 (6), 1286–1293 (2021).
15. Klaus M. On the bound states of Schr¨odinger operators in one dimension, Ann. Phys. 108 (2), 288–300 (1977).
16. Simon B. The bound state of weakly coupled Schr¨odinger operators in one and two dimensions, Ann. Phys. 97 (2), 279–288 (1976).
17. Рид М., Саймон Б. Методы современной математической физики, Т. 4, Анализ операторов (Мир, М., 1982).
18. Бахронов Б.И., Расулов Т.Х., Рехман М. Условия существования собственных значений трехчастичного решетчатого модельного гамильтониана, Изв. вузов. Матем. (7), 3–12 (2023).
19. Абдуллаев Ж.И., Халхужаев А.М., Расулов Т.Х. Инвариантные подпространства и собственные значения трехчастичного оператора Шрёдингера, Изв. вузов. Матем. (9), 3–19 (2023).
20. Расулов Т.Х., Мухитдинов Р.Т. Конечность дискретного спектра модельного оператора, ассоциированного с системой трех частиц на решетке, Изв. вузов. Матем. (1), 61–70 (2014).
Review
For citations:
Rasulov T.Kh., Khalkhuzhaev A.M., Pardabaev M.A., Khayitova Kh.G. Expansions of eigenvalues of a discrete bilaplacian with two-dimensional perturbation. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):77-89. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-77-89