Countably many positive solutions for iterative system of boundary value problems on time scales
https://doi.org/10.26907/0021-3446-2024-10-61-76
Abstract
This paper establishes the existence of countably many positive solutions for a second order iterative system of two-point boundary value problems by using Holder’s inequality and Guo–Krasnoselskii’s fixed point theorem for operator on a cone.
About the Authors
K. R. PrasadIndia
Kapula Rajendra Prasad
Visakhapatnam, 530003
B. Sravani
India
Butu Sravani
Visakhapatnam, 530003
N. Sreedhar
India
Namburi Sreedhar
Visakhapatnam, 530045
References
1. Agarwal R.P., Bohner M. Basic Calculus on Time Scales and some of its Applications, Results Math. 35, 3–22 (1999).
2. Agarwal R., Bohner M., O’Regan D., Peterson A. Dynamic equations on time scales: a survey, J. Comput. Appl. Math. 141 (1–2), 1–26 (2002).
3. Bohner M., Peterson A.C. Advances in Dynamic Equations on Time Scales (Birkhauser, Boston, 2003).
4. Benchohra M., Berhoun F., Hamani S., Henderson J., Ntouyas S.K., Quahab A., Purnas I.K. Eigenvalues for iterative systems of nonlinear boundary value problems on time scales, Nonlilnear Dyn. Syst. Theory. 1 (1), 11–22 (2009).
5. Prasad K.R., Khuddush M., Vidyasagar K.V. Infinitely many positive solutions for an iterative system of singular BVP on time scales, Cubo 24 (1), 21–35 (2022).
6. Graef J.R., Heidarkhani S., Kong L. Infinitely Many Solutions for Systems of Sturm–Liouville Boundary Value Problems, Results Math. 66, 327–341 (2014).
7. Henderson J., Ntouyas S.K. Positive solutions for systems of n th order three-point nonlocal boundary value problems, Electron. J. Qual. Theory Diff. Equat. 2007 (18), 1–12 (2007).
8. Henderson J., Ntouyas S.K., Purnaras I.K. Positive solutions for systems of generalized three-point nonlinear boundary value problems, Comment. Math. Univ. Carol. 49 (1), 79–91 (2008).
9. Henderson J., Ntouyas S.K., Purnaras I.K. Positive solutions for systems of second order four-point nonlinear boundary value problems, Commun. Appl. Anal. 12 (1), 29–40 (2008).
10. Prasad K.R., Sreedhar N., Kumar K.R. Solvability of iterative systems of three-point boundary value problems, TWMS J. Appl. Eng. Math. 3 (2), 147–159 (2013).
11. Prasad K.R., Rashmita M., Sreedhar N. Solvability of higher order three-point iterative systems, Уфимск. матем. журн. 12 (3), 107–122 (2020).
12. Benchohra M., Henderson J., Ntouyas S.K. Eigenvalue Problems for Systems of Nonlinear Boundary Value Problems on Time Scales, Adv. Diff. Equat. 2007 (1), 1–10 (2007).
13. Prasad K.R., Sreedhar N., Srinivas M.A.S. Eigenvalue intervals for iterative systems of nonlinear three-point boundary value problems on time scales, Nonlinear Stud. 22 (3), 419–431 (2015).
14. Prasad K.R., Sreedhar N., Narasimhulu Y. Eigenvalue intervals for iterative systems of nonlinear m-point boundary value problems on time scales, Diff. Equat. Dyn. Syst. 22, 353–368 (2014).
15. Prasad K.R., Khuddush M., Vidyasagar K.V. Denumerably Many Positive Solutions for Iterative System of Singular Two-Point Boundary Value Problems on Time Scales, Int. J. Diff. Equat. 15 (1), 153–172 (2020).
16. Karaca I.Y., Tokmak F. Eigenvalues for iterative systems of nonlinear m-point boundary value problems on time scales, Bound. Value Probl. 2014 (63), 1–17 (2014).
17. Bohner M., Luo H. Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Adv. Diff. Equat. 2006, 054989, 1–15 (2006).
18. Agarwal R.P., Otero-Espinar V., Perera K., Vivero D.R. Basic properties of Sobolev’s spaces on time scales, Adv. Diff. Equat. 2006, 038121, 1–14 (2006).
19. Anastassiou G.A. Intelligent Mathematics: Computational Analysis (Springer, Heidelberg, 2011).
20. Ozkan U.M., Sarikaya M.Z., Yildirim H. ¨ Extensions of certain integral inequalities on time scales, Appl. Math. Lett. 21 (10), 993–1000 (2008).
21. Guo D., Lakshmikantham V. Nonlinear problems in abstract cones (Academic Press, San Diego, 1988).
Review
For citations:
Prasad K.R., Sravani B., Sreedhar N. Countably many positive solutions for iterative system of boundary value problems on time scales. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):61-76. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-61-76