Propagation of eigenwaves in plane three-layer media
https://doi.org/10.26907/0021-3446-2024-10-51-60
Abstract
The paper considers the problem of propagation of natural stress waves in a strip that is in contact with an unbounded isotropic viscoelastic medium made of another material. It is assumed that there are no external influences during the propagation of natural waves. In some cases, the physical properties of viscoelastic materials are described by linear hereditary Boltzmann–Voltaire relations with integral differences of heredity kernels. Some of the layers can be elastic. In this case, the heredity kernels describing the rheological properties of the layers are identically zero. A system in which the rheological properties of the layers are identical (the nuclei of heredity of elements are equal to each other) will be called dissipatively homogeneous. In the particular case, when there are no external influences, the propagation of damped waves of the system is considered; — in the presence of external influences — forced. The main problem is the study of the dissipative (damping) properties of the system as a whole, as well as its stress-strain state.
About the Authors
J. Z. NuriddinovUzbekistan
Javlon Zafarovich Nuriddinov
11 M. Iqbol str., Bukhara, 200118
B. J. Nuriddinov
Uzbekistan
Baxtiyor Zafarovich Nuriddinov
32 A. Navoi str., Tashkent, 100011
Z. Sh. Ochilova
Uzbekistan
Zamira Shukirillo qizi Ochilova
2 Piridastgir str., Bukhara, 200100
References
1. Вестяк А.В., Горшков А.В., Тарлаковский Д.В. Нестационарное взаимодействие деформируемых тел с оркужающей средой, Итоги науки и техн. Сер. МДТТ 15, 69–148 (ВИНИТИ, М., 1983).
2. Горшков А.Г. Нестационарное взаимодействие пластин и оболочек со сплошными средами, Изв. РАН. МТТ (4), 177–189 (1981).
3. Болотин В.В., Новичков Ю.Н. Механика многослойных конструкций (Машиностроение, М., 1980).
4. Krylov V.V. On the velocities of localised vibration modes in immersed solid wedges, J. Acoustical Soc. Amer. 103 (2), 767–770 (1998).
5. Hladky-Hennion A.-C. Finite element analysis of the propagation of acoustic waves in waveguides, J. Sound and Vibration 194 (2), 119–136 (1996).
6. Krylov V.V., Shuvalov A.L. Propagation of localised flexural vibrations along plate edges described by a power law., Proc. Inst. Acoustics 22 (2), 263–270 (2000).
7. Shuvalov A.L., Krylov V.V. Localised vibration modes in free anisotropic wedges., J. Acoustical Soc. Amer. 107 (1), 657–660 (2000).
8. Krylov V.V., Parker D.F. Harmonic generation and parametric mixing in wedge acoustic waves, Wave Motion 15 (2), 185–200 (1992).
9. Krylov V.V., Mayer A.P., Parker D.F. Nonlinear evolution of initially sine-like wedge acoustic waves, Proc. IEEE 1993 Ultrasonics Symposium, Baltimore, USA, 765–768 (1993).
10. Mayer A.P., Krylov V.V., Lomonosov A.M. Guided acoustic waves propagating at surfaces, interfaces and edges, Proc. IEEE 2011 International Ultrasonics Symposium, Orlando, FL, USA, 2046–2052 (2011).
11. Hayashi Т., Tamayama С., Murase M. Wave structure analysis of guided waves in a bar with an arbitrary cross-section, Ultrasonics 44 (1), 17–24(2006).
Review
For citations:
Nuriddinov J.Z., Nuriddinov B.J., Ochilova Z.Sh. Propagation of eigenwaves in plane three-layer media. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):51-60. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-51-60