Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Propagation of eigenwaves in plane three-layer media

https://doi.org/10.26907/0021-3446-2024-10-51-60

Abstract

The paper considers the problem of propagation of natural stress waves in a strip that is in contact with an unbounded isotropic viscoelastic medium made of another material. It is assumed that there are no external influences during the propagation of natural waves. In some cases, the physical properties of viscoelastic materials are described by linear hereditary Boltzmann–Voltaire relations with integral differences of heredity kernels. Some of the layers can be elastic. In this case, the heredity kernels describing the rheological properties of the layers are identically zero. A system in which the rheological properties of the layers are identical (the nuclei of heredity of elements are equal to each other) will be called dissipatively homogeneous. In the particular case, when there are no external influences, the propagation of damped waves of the system is considered; — in the presence of external influences — forced. The main problem is the study of the dissipative (damping) properties of the system as a whole, as well as its stress-strain state.

About the Authors

J. Z. Nuriddinov
Bukhara State University
Uzbekistan

Javlon Zafarovich Nuriddinov 

11 M. Iqbol str., Bukhara, 200118 



B. J. Nuriddinov
Tashkent Institute Chemical Technology
Uzbekistan

Baxtiyor Zafarovich Nuriddinov 

32 A. Navoi str., Tashkent, 100011 



Z. Sh. Ochilova
Bukhara State Pedagogical Institute
Uzbekistan

Zamira Shukirillo qizi Ochilova 

2 Piridastgir str., Bukhara, 200100 



References

1. Вестяк А.В., Горшков А.В., Тарлаковский Д.В. Нестационарное взаимодействие деформируемых тел с оркужающей средой, Итоги науки и техн. Сер. МДТТ 15, 69–148 (ВИНИТИ, М., 1983).

2. Горшков А.Г. Нестационарное взаимодействие пластин и оболочек со сплошными средами, Изв. РАН. МТТ (4), 177–189 (1981).

3. Болотин В.В., Новичков Ю.Н. Механика многослойных конструкций (Машиностроение, М., 1980).

4. Krylov V.V. On the velocities of localised vibration modes in immersed solid wedges, J. Acoustical Soc. Amer. 103 (2), 767–770 (1998).

5. Hladky-Hennion A.-C. Finite element analysis of the propagation of acoustic waves in waveguides, J. Sound and Vibration 194 (2), 119–136 (1996).

6. Krylov V.V., Shuvalov A.L. Propagation of localised flexural vibrations along plate edges described by a power law., Proc. Inst. Acoustics 22 (2), 263–270 (2000).

7. Shuvalov A.L., Krylov V.V. Localised vibration modes in free anisotropic wedges., J. Acoustical Soc. Amer. 107 (1), 657–660 (2000).

8. Krylov V.V., Parker D.F. Harmonic generation and parametric mixing in wedge acoustic waves, Wave Motion 15 (2), 185–200 (1992).

9. Krylov V.V., Mayer A.P., Parker D.F. Nonlinear evolution of initially sine-like wedge acoustic waves, Proc. IEEE 1993 Ultrasonics Symposium, Baltimore, USA, 765–768 (1993).

10. Mayer A.P., Krylov V.V., Lomonosov A.M. Guided acoustic waves propagating at surfaces, interfaces and edges, Proc. IEEE 2011 International Ultrasonics Symposium, Orlando, FL, USA, 2046–2052 (2011).

11. Hayashi Т., Tamayama С., Murase M. Wave structure analysis of guided waves in a bar with an arbitrary cross-section, Ultrasonics 44 (1), 17–24(2006).


Review

For citations:


Nuriddinov J.Z., Nuriddinov B.J., Ochilova Z.Sh. Propagation of eigenwaves in plane three-layer media. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):51-60. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-51-60

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)