Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Convergence of the trajectories of a non-Volterra quadratic stochastic operator

https://doi.org/10.26907/0021-3446-2024-10-45-50

Abstract

In the present paper we consider non-Volterra quadratic stochastic operators defined on the two-dimensional simplex depending on a parameter \alpha . We show that such an operator has a unique fixed point and all the trajectories converge to this unique fixed point.

About the Author

B. J. Mamurov
Nuriddinov Bukhara State University
Uzbekistan

Bobokhon Jurayevich Mamurov 

11 M. Iqbol str., Bukhara, 200118 



References

1. Blath J., Jamilov U.U., Scheutzow M. (G, mu )-quadratic stochastic operators, J. Diff. Equat. Appl. 20 (8), 1258–1267 (2014).

2. Ганиходжаев Р.Н. Квадратичные стохастические операторы, функции Ляпунова и турниры, Матем. сб. 183 (8), 119–140 (1992).

3. Ganikhodzhaev R., Mukhamedov F., Rozikov U. Quadratic stochastic operators and processes: results and open problems, Infin. Dimens. Anal. Quan. Probab. Relat. Top. 14 (2), 279–335 (2011).

4. Jamilov U.U. Quadratic stochastic operators corresponding to graphs, Lobachevskii J. Math. 34 (2), 148–151 (2013).

5. Jamilov U.U. On a family of strictly non-volterra quadratic stochastic operators, J. Phys.: Conf. Ser. 697 (1), 012013 (2016), DOI: 10.1088/1742-6596/697/1/012013.

6. Jamilov U.U., Mamurov B.J. Asymptotical behavior of trajectories of non-Volterra quadratic stochastic operators, Lobachevskii J. Math. 43 (11), 3174–3182 (2022).

7. Jamilov U.U., Khudoyberdiev Kh.O. An (alpha , beta )-quadratic stochastic operator acting in S2, J. Appl. Nonlinear Dynamics 11 (4), 777–788 (2022).

8. Lyubich Y.I. Mathematical Structures in Population Genetics, Biomathematics 22 (Springer-Verlag, Berlin, 1992).

9. Мамуров Б.Дж. Выпуклая комбинация двух квадратичных стохастических операторов, действующих на 2D-симплексе, Изв. вузов. Матем. (7), 66–70 (2023).

10. Rozikov U.A., Solaeva M.N. Behavior of Trajectories of a Quadratic Operator, Lobachevskii J. Math. 44 (7), 2910–2915 (2023).

11. Rozikov U.A., Nazir S. Separable Quadratic Stochastic Operators, Lobachevskii J. Math. 31 (3), 215–221 (2010).

12. Ulam S.M. A collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics 8 (Interscience Publ., New York–London, 1960).

13. Devaney R.L. An introduction to chaotic dynamical systems, 2nd edition, Studies in Nonlinearity (AddisonWesley Publ. Comp., 1989).


Review

For citations:


Mamurov B.J. Convergence of the trajectories of a non-Volterra quadratic stochastic operator. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):45-50. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-45-50

Views: 72


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)