On some extensions of \pi -regular rings
https://doi.org/10.26907/0021-3446-2024-10-22-33
Abstract
Some variations of \pi -regular and nil clean rings were recently introduced in the works of the first author: “A generalization of \pi -regular rings, Turkish J. Math. 43 (2), 702–711 (2019)”, “A symmetrization in \pi -regular rings, Trans. A. Razmadze Math. Inst. 174 (3), 271–275 (2020)”, “A symmetric generalization of \pi -regular rings, Ric. Mat. 73 (1), 179–190 (2024)”. In this paper, we examine the structure and relationships between these classes of rings. Specifically, we prove that (m, n)-regularly nil clean rings are left-right symmetric and also show that the inclusions (D- regularly nil clean) (regularly nil clean) ((m, n)-regularly nil clean) hold, as well as we answer Questions 1, 2 and 3 posed in the third of the above-listed works. Moreover, we also consider other similar questions concerning the symmetric properties of certain classes of rings. For example, it is proven that centrally Utumi rings are always strongly \pi -regular.
About the Authors
P. DanchevBulgaria
Peter Danchev
1113 Sofia
A. Javan
Islamic Republic of Iran
Arash Javan
14115-111 Tehran Jalal AleAhmad Nasr
A. Moussavi
Islamic Republic of Iran
Ahmad Moussavi
14115-111 Tehran Jalal AleAhmad Nasr
References
1. Lam T.Y. A First Course in Noncommutative Rings, V. 131, 2nd edition, Graduate Texts in Mathematics (Springer-Verlag, New York, 2001).
2. Lam T.Y. Exercises in Classical Ring Theory, 2nd edition, Problem Books in Mathematics (Springer-Verlag, New York, 2003).
3. Goodearl K.R. Von Neumann Regular Rings, Monographs and Studies in Mathematics (Pitman, Boston, Massachussetts, 1979).
4. Tuganbaev A.A. Rings Close to Regular, V. 545, Mathematics and Its Applications (Springer Netherlands, Amsterdam, 2013).
5. Danchev P.V. Generalizing nil clean rings, Bull. Belg. Math. Soc. (Simon Stevin) 25 (1), 13–29 (2018).
6. Hartwig R., Luh J. A note on the group structure of unit regular ring elements, Pac. J. Math. 71 (2), 449–461 (1977).
7. Lam T.Y., Murray W. Unit regular elements in corner rings, Bull. Hong Kong Math. Soc. 1 (1), 61–65 (1997).
8. Kaplansky I. Topological representation of algebras II, Trans. Amer. Math. Soc. 68 (1), 62–75 (1950).
9. Azumaya G. Strongly pi -regular rings, J. Fac. Sci. Hokkaido Univ. Ser. I 13 (1), 034–039 (1954).
10. Dischinger F. Sur les anneaux fortement pi -re'guliers, Compt. Rend. Acad. Sci. Paris. Ser. A–B 283 (8), 571–573 (1976).
11. Danchev P.V. A generalization of pi -regular rings, Turkish J. Math. 43 (2), 702–711 (2019).
12. Danchev P.V. A symmetrization in pi -regular rings, Trans. A. Razmadze Math. Inst. 174 (3), 271–275 (2020).
13. Danchev P.V. A symmetric generalization of pi -regular rings, Ric. Mat. 73 (1), 179–190 (2024).
14. Danchev P.V., Ster J. ˇ Generalizing pi -regular rings, Taiwanese J. Math. 19 (6), 1577–1592 (2015).
15. Nicholson W.K. Lifting Idempotents and Exchange Rings, Trans. Amer. Math. Soc. 229, 269–278 (1977).
16. Nicholson W.K. Strongly clean rings and fitting’s lemma, Commun. Algebra 27 (8), 3583–3592 (1999).
17. Khurana D., Lam T.Y., Nielsen P.P. Two-Sided Properties of Elements in Exchange Rings, Algebras Represent. Theory 18, 931–940 (2015).
18. Diesl A.J. Nil clean rings, J. Algebra 383, 197–211 (2013).
19. Stock J. On rings whose projective modules have the exchange property, J. Algebra 103 (2), 437–453 (1986).
20. Chen J., Yang X., Zhou Y. On Strongly Clean Matrix and Triangular Matrix Rings, Commun. Algebra 34 (10), 3659–3674 (2006).
21. Hegde S. On uniquely clean elements, Commun. Algebra 51 (5), 1835–1839 (2023).
22. Khurana D., Lam T.Y., Nielsen P.P., Zhou Y. Uniquely clean elements in rings, Commun. Algebra 43 (5), 1742–1751 (2015).
23. Handelman D. Perspectivity and cancellation in regular rings, J. Algebra 48 (1), 1–16 (1977).
24. Camillo V.P., Yu H.-P. Exchange rings, units and idempotents, Commun. Algebra 22 (12), 4737–4749 (1994).
25. Nielsen P.P., Ster J. ˇ Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings, Trans. Amer. Math. Soc. 370 (3), 1759–1782 (2018).
Review
For citations:
Danchev P., Javan A., Moussavi A. On some extensions of \pi -regular rings. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(10):22-33. (In Russ.) https://doi.org/10.26907/0021-3446-2024-10-22-33