An analog of the Poincar´e metric and isoperimetric constants
https://doi.org/10.26907/0021-3446-2024-9-92-99
Abstract
For plane domains we define a new metric close to the Poincar\'{e} metric with the Gaussian curvature $k=-4$. For this quasi-hyperbolic metric we study inequalities of isoperimetric type. It is proved that the constant of the linear quasi-hyperbolic isoperimetric inequality for admissible subdomains of a given domain is finite if and only if the domain does not contain the point at infinity and has a uniformly perfect boundary. Also, we give estimates of these constants using some known numerical characteristics of domains.
About the Author
F. G. AvkhadievRussian Federation
Farit Gabidinovich Avkhadiev
18 Kremlyovskaya str., Kazan, 420008
References
1. Голузин Г.М. Геометрическая теория функций комплексного переменного (Наука, М., 1966).
2. Ahlfors L.V. Conformal invariants: Topics in Geometric Function Theory (McGraw-Hill, New-York, 1973).
3. Bandle C. and Flucher M. Harmonic radius and concentration of energy: hyperbolic radius and Liouville’s equations Delta U = eU and Delta U = U n+2 n 2 , SIAM Review 38 (2), 191–238 (1996).
4. Avkhadiev F.G., Wirths K.-J. Schwarz-Pick Type Inequalities (Birkha¨user Verlag, Basel-Boston-Berlin, 2009).
5. Авхадиев Ф.Г. Конформно инвариантные неравенства (Казанский университет, Казань, 2020).
6. Balinsky A.A., Evans W.D., Lewis R.T. The Analysis and Geometry of Hardy’s Inequality (Springer, Heidelberg New York Dordrecht London, 2015).
7. Rademacher H. ¨Uber partielle und totale Differenzierbarkeit I, Math. Ann. 89, 340–359 (1919).
8. Avkhadiev F.G. A Strong Form of Hardy Type Inequalities on Domains of the Euclidean Space, Lobachevskii J. Math. 41 (11), 2120–2135 (2020).
9. Osserman R. The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (6), 1182–1238 (1978).
10. Бураго Ю.Д., Залгаллер В.А. Геометрические неравенства (Наука, Ленинград, 1980).
11. Pommerenke Ch. Uniformly perfect sets and the Poincar´e metric, Arch. Math. 32 (2), 192–199 (1979).
12. Avkhadiev F.G. Euclidean maximum moduli of plane domains and their applications, Complex Variables Elliptic Equat. 64 (11), 1869–1880 (2019).
13. Osgood B. Some properties of fprime prime /fprime and the Poincar´e metric, Indiana Univ. Math. J. 31 (2), 449–461 (1982).
14. Авхадиев Ф.Г. Решение обобщенной задачи Сен-Венана, Матем. сб. 189 (12), 3–12 (1998).
15. Avkhadiev F.G., Kayumov I.R. Comparison theorems of isoperimetric type for moments of compact sets, Collectanea Math. 55 (1), 1–9 (2004).
16. Авхадиев Ф.Г. Конформные отображения и краевые задачи, 2-е издание, перераб. и доп. (Казанский университет, Казань, 2019).
17. Авхадиев Ф.Г. Теоремы вложения, связанные с жесткостью кручения и основной частотой, Изв. РАН. Сер. матем. 86 (1), 3–35 (2022).
18. Avkhadiev F.G., Kacimov A.R. The Saint-Venant type isoperimetric inequalities for assessing saturated water storage in lacunary shallow perched aquifers, ZAMM 103 (1), 1–22 (2022).
19. Авхадиев Ф.Г. Конформно инвариантные неравенства в областях евклидова пространства, Изв. РАН. Сер. матем. 83 (5), 3–26 (2019).
20. Schoen R., Yau S.-T. Conformally flat manifold, Kleinian groups and scalar curvature, Invent. math. 92, 47–71 (1988).
Review
For citations:
Avkhadiev F.G. An analog of the Poincar´e metric and isoperimetric constants. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):92-99. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-92-99